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Abstract

The paper presents an overview of the problem of assessing an increment of strain energy due to the appearance of

small cavities in elastic solids. The following approaches are discussed: the compound asymptotic method by Mazja

et al., the Eshelby-like method used in the classical works on the mechanics of composites, the homogenization method,

and the topological derivative method proposed by Sokołowski and _ZZochowski. The increment of energy is expressed
by a quadratic form with respect to strains referring to the virgin solid. All the methods lead to the same formula for the

increment of energy. It is expressed by a quadratic form with respect to strains referring to the virgin solid. This

quadratic form turns out to be unconditionally positive definite. Explicit formulae are derived for an elliptical hole and

for a spherical cavity. The results derived determine the characteristic function of the bubble method of the optimal

shape design of elastic 2D and 3D structures.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problem of assessing the change in energy stored in an elastic body weakened by a small cavity is of
fundamental importance in the mechanics of porous media. Although its averaged solution can be found by

the energy method of Eshelby (1957), originally developed for the ellipsoidal inclusion case, it traces back to

older results of Mackenzie (1950), concerning inclusions and cavities of spherical shapes. Knowing a

formula for change of energy due to the appearance of a cavity or an inclusion makes it possible to assess

effective moduli of composites. The simplest solutions concern the case of non-interactive inhomogeneities.

These solutions based on Eshelby�s results are well known to the community dealing with the mechanics of
composites (cf. Christensen, 1979; Mura, 1982; Nemat-Nasser and Hori, 1993). It seems, however, that the

asymptotic justification of Eshelby�s methods, developed in Mazja et al. (1991) and Maz�ya and Nazarov
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(1987), is less known or even ignored. A deeper insight into the small opening problem reveals a link be-

tween Eshelby�s formulae and older solutions of Polya and Szeg€oo, see Schiffer and Szeg€oo (1949). These
results interrelate the small opening problem with the problem of a concentrated loading and, consequently,

with the theory of Green�s function. On the other hand, the results of Polya and Szeg€oo opened new pers-
pectives for posing and solving some optimization questions. The works of Mazja et al. extended the Polya–

Schiffer–Szeg€oo results to the elasticity field thus providing asymptotic justifications of Eshelby�s formulae.
Also these results contribute to formulating new classes of shape optimization problems (see Nazarov and

Sokołowski, 2003).

The classical shape design problem reads: lay out a given amount of material in a given feasible domain

such that the overall compliance of the structure attains a minimum. It is known that this formulation

requires relaxation. If based upon the homogenization theory, such relaxation admits a new design material

of porous microstructure, the properties of which being determined by the homogenization formulae (cf.
Allaire and Kohn, 1993; Cherkaev, 2000; Lewi�nnski and Telega, 2000, and the literature cited therein). In the
case of a dilute distribution of cavities within a representative volume element, the effective properties are

governed by simplified formulae found previously by Eshelby (1957) without any reference to mathematical

averaging methods. These formulae can be further linearized with respect to porosity density without any

loss in accuracy. On the other hand, the same results can be justified by the asymptotic methods of Mazja

et al. (1991). Therefore, the following four approaches complement each other: Eshelby (mechanics of

composites), Mazja et al. (asymptotic analysis of perturbation of domains), Sokołowski and _ZZochowski
(topological derivative of shape functionals) and the homogenization approach.
Relaxation by homogenization is not the only method to attack shape optimization problems. Important

suboptimal solutions have been found by the bubble method of Eschenauer et al. (1994) and Schumacher

(1995) cf. Eschenauer and Schumacher (1997). The idea of its numerical algorithm consists in removing

these subdomains where a characteristic function assumes values smaller than a given threshold value. It

has turned out recently that the characteristic function of the bubble method is determined by the topo-

logical derivative of shape functionals. Sokołowski and _ZZochowski (1999a,b) presented an algorithm for

finding the topological derivative of a large class of shape functionals, whereas the only shape functional

considered in Eschenauer et al. (1994) was the compliance. Let us recall that the topological derivative
defined in Sokołowski and _ZZochowski (1999a,b) represents a change of a given shape functional caused by
the appearance of a small spherical opening in a given domain. Lewi�nnski and Sokołowski (1999, 2000)
generalized the notion of the topological derivative to the case of non-spherical openings in the context of

the Neumann boundary value problem, and for the energy functional. This generalization made use of the

compound asymptotic expansions of Mazja et al. (1991). Further generalizations to a more general class of

functionals can be found in Nazarov and Sokołowski (2003). New numerical techniques of the bubble

method have been recently developed by Garreau et al. (2001).

In the present paper the notion of a directional topological derivative is defined for appearing of non-
circular holes and non-spherical cavities in general case of linear elasticity. The functional of compliance is

considered. A proof is given that the characteristic function of the bubble method for the compliance

functional coincides with the expression for a change of the elastic energy caused by the appearance of an

arbitrary hole in the 2D setting, and by the appearance of cavity of an arbitrary shape in the 3D setting. In

this problem the results of the following methods coincide: the Eshelby like approaches (see Kachanov et al.,

1994) the compound asymptotics method and the topological derivative method.

The paper is organized as follows. In Section 2 we rederive the results of Mazja et al. (1991) concerning

the change of energy caused by the appearance of a small hole in an elastic solid. We derive the formulae for
the Polya–Szeg€oo tensor M, treated here as the rank four tensor. Our approach differs essentially from that
of Mazja et al. (1991). The formula for the energy change is then rearranged to a form applicable in the

mechanics of composites (see Kachanov, 1999). In particular, the cavity compliance tensor H is introduced

in a new manner. In Section 4 we refer to the concept of the topological derivative for circular holes and
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prove that this method leads to the tensor H identical with that followed from the Eshelby-like approach.

Sensitivity of the energy functional with respect to the appearance of a non-circular hole is considered in

Section 5 by generalization of the topological derivative approach. With using the Muskhelishvili (1975)

solution it is shown that all available methods result in the same formula for the energy change due to the
appearance of an elliptical hole. The topological derivative determines the sensitivity of energy by a quad-

ratic form with a matrix G . It has turned out recently that G ¼ M irrespective of the shape of a hole (see

Nazarov and Sokołowski, 2003). We note that the matrixM is unconditionally negative definite. This proof

is straightforward (see Section 2.3). On the contrary, the very definition of the matrix G suggests that it is

negative definite for star-shaped domains only (see Eq. (161)). Due to the equality G ¼ M we realize that

this assumption is redundant. The explicit formulae for the components of G ¼ M can be found for an

elliptical hole, as shown in Section 6. Independent computations of components of M and G are reported

for the convenience of the reader.
In Section 7 we put forward a generalization of previous results to the 3D setting. We refer to the

Eshelby-like results for a spherical cavity. Then we show the way the cavity compliance tensor H appears in

the compound asymptotics approach. According to Nazarov and Sokołowski (2003) this result is equi-

valent to the result found by the topological derivative method.

The effective moduli of composites of an isotropic matrix and anisotropic inclusions of small concen-

tration have been derived by Sanchez-Palencia (1985) in the context of a scalar elliptic problem with pe-

riodic coefficients. Similar approximate formulae for the effective moduli of porous media with periodically

distributed voids can be put forward within the linear elasticity formulation as exposed e.g. by Jikov et al.
(1994). In Section 8 we prove that in the case of dilute distribution of spherical cavities the homogenization

formulae simplify to the formulae which are linearization of the Eshelby equations with respect to the

density of porosity. Then we show that these formulae coincide with those reported in Nemat-Nasser and

Hori (1993), where they follow from the method of prescribing microstrains. On the other hand, the method

in which microstresses are prescribed can be viewed as a result of imposing the dilute approximation on the

homogenization formulae put in their dual form, involving homogenized stresses.

Applications of the dilute approximation formulae for effective moduli extend the framework of the

mechanics of composites. Since relaxation by homogenization means admitting a porous body as a design
material, the dilute approximation formulae apply in the algorithm of shape optimization, where the poro-

sity density plays the role of a new design variable.

The problems considered in the present paper should not be misled with the cavitation problem referring

to finite deformations of elastic solids, discussed in the papers by Ball (1982), M€uuller and Spector (1995)
and in the papers cited therein.

The following notation will be adopted. Small Latin indices, like i, j, k, l, m, n, p, q, s, . . . run over 1, 2, 3;
the small Greek indices, like a, b, k, l, c, d, i, j, . . ., except for e, assume the values 1, 2. The symbol e
represents a small positive parameter. Let u ¼ ðu1; u1Þ and w ¼ ðw1;w2;w2Þ depend on (x1; x2), (y1; y2) or
(x1; x2; x3Þ, (y1; y2; y3), respectively. Then we define the operators

�abðuÞ ¼
1

2

oua

oxb

�
þ oub

oxa

�
; �yabðuÞ ¼

1

2

oua

oyb

�
þ oub

oya

�
;

�ijðwÞ ¼
1

2

owi

oxj

�
þ owj

oxi

�
; �yijðwÞ ¼

1

2

owi

oyj

�
þ owj

oyi

�
:

Since all tensors are referred to Cartesian systems the position of indices is arbitrary. The summation

convention applies to the indices at different levels. To avoid misunderstandings the sign
P
appears, if

necessary.
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The space of symmetric tensors of the rank two is denoted byM2
s , whileM

4
s is the space of all tensors of

the rank four possessing well known symmetry properties of the Hooke�s tensor. The inner product in M2
s

is defined by ‘‘:’’; thus for a; b 2 M2
s we write a : b ¼ aabbab or aijbij. The norm is defined by kak ¼ ða : aÞ1=2.

For A;B 2 M4
s the product AB is defined by ðABÞ

abkl ¼ ðAabcdBkl
cd Þ in the 2D case and, similarly, for the

3D case.

The unit tensors 1 2 M2
s and I 2 M4

s , referred to the 3D Euclidean space spanned over the orthonormal

basis (ei) have the following representations

1 ¼ dijei � ej; ð1Þ

I ¼ 1
2
ðdikdjl þ dildjkÞei � ej � ek � el: ð2Þ

For the 2D case the representations are similar.
The isotropic tensors a 2 M2

s and B 2 M4
s are represented by

a ¼ a1; B ¼ a1� 1þ bI: ð3Þ
Consider the 3D case. The tensors

K1 ¼
1

3
1� 1; K2 ¼ I� K1 ð4Þ

are mutually orthogonal projectors having the properties

K1K1 ¼ K1; K1K2 ¼ K2K1 ¼ 0; K2K2 ¼ K2: ð5Þ
To invert B we rearrange its representation

B ¼ ð3aþ bÞK1 þ bK2:

If 3aþ b 6¼ 0, b 6¼ 0, we find

B�1 ¼ ð3aþ bÞ�1K1 þ b�1K2: ð6Þ
Consider the 2D case. The projectors are defined by

K1 ¼
1

2
1� 1; K2 ¼ I� K1: ð7Þ

To invert B we write B ¼ ð2aþ bÞK1 þ bK2 and if 2aþ b 6¼ 0, b 6¼ 0, one finds

B�1 ¼ ð2aþ bÞ�1K1 þ b�1K2: ð8Þ

2. A hole in a plane body: evaluation of change of energy by the compound asymptotics method

2.1. Setting of the problem

Let us consider a plane open domain X 
 R2 parametrization by the Cartesian coordinate system (x1; x2)
with the basis vectors e1, e2. Assume that its origin 0 ¼ ð0; 0Þ lies within X. Let us form a family of domains
xe around 0 such that 0 2 xe and

xe ¼ x
x
e
2 x

���n o
: ð9Þ

Here x ¼ ðx1; x2Þ, e is a small parameter and x is an open domain in R2. For e sufficiently small xe 
 X and
the domain Xe ¼ X n xe will play the role of the domain occupied by an elastic homogeneous body. The
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domain xe represents a hole in the body. If e changes, the holes remain homothetic to the rescaled hole x.
The domain x and its surrounding R2 n x will be parametrized by the Cartesian coordinates (y1; y2); its
central point 0 2 x (see Fig. 1).

Let us assume that m ¼ ðm1; m2Þ and s ¼ ðs1; s2Þ are vectors: outward normal and tangent to ox at a point
A ¼ ðy1; y2Þ (see Fig. 1). Note that me and se at Ae ¼ ðey1; ey2Þ 2 oxe have the same components as m and s,

respectively.

We consider a plane (plane stress or plane strain) elasticity problem in the domain Xe. The strains as-

sociated with a trial displacement field u ¼ ðu1; u2Þ are given by the formula

�abðuÞ ¼
1

2

oua

oxb

�
þ oub

oxa

�
ð10Þ

and the linear constitutive relations are written in the form

rabðuÞ ¼ Aabkl�klðuÞ; ð11Þ

where A ¼ ðAabklÞ 2 M4
s refers to the plane stress or plane strain. Tensor A is assumed to be positive definite

Aabkljabjkl P cjabj
ab 8j 2 M2

s ð12Þ

and c > 0.
Assume that the external boundary oX of Xe is loaded by tractions of intensity p ¼ ðpaÞ and that they

satisfy the usual conditions of self-equilibriumZ
oX

p 
 vds ¼ 0; 8v 2 R; ð13Þ

where 1 R ¼ fvjva ¼ v0a þ /eb
axbg; here v0a, / are constants and (e

b
a) are components of the Ricci tensor; i.e.

e11 ¼ e22 ¼ 0, e21 ¼ �e21 ¼ 1. The boundary oxe is unloaded. The body forces are omitted.

The stresses associated with the unknown displacement field ue satisfy the homogeneous equations of

equilibrium

Fig. 1. The rescaled shape of the hole.

1 The quantity v ¼ ðv1; v2Þ represents a displacement field, while the quantity m ¼ ðm1; m2Þ represents a vector outward normal to ox.
The fonts used look the same, which should not lead to misunderstandings.
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orabðueÞ
oxb

¼ 0 ð14Þ

and the boundary conditions

rabðueÞnb ¼ pa on oX; ð15Þ

rabðueÞmb ¼ 0 on oxe: ð16Þ
Here n ¼ ðnbÞ, m ¼ ðmbÞ represent unit vectors outward normal to X and xe, respectively. Due to the
condition (13) the stresses rabðueÞ and strains �abðueÞ are defined uniquely, while ue is defined up to the plane

rigid motions.

The conditions (14)–(16) are equivalent to the variational equationZ
Xe

rabðueÞ�abð~vvÞdx ¼
Z
oX

p 
 ~vvds; ð17Þ

valid for all sufficiently regular ~vv; here dx ¼ dx1 dx2.
The elastic energy stored in the body with a hole equals

EðXeÞ ¼
1

2

Z
Xe

rabðueÞ�abðueÞdx: ð18Þ

The aim of the present section is to find an asymptotic formula for the change of energy EðXeÞ � EðXÞ, where
EðXÞ represents the energy stored in the body without a hole, and subjected to the same loading at oX:

EðXÞ ¼ 1
2

Z
X

rabðvÞ�abðvÞdx: ð19Þ

Here v is the displacement field within X satisfying:

i(i) the equilibrium equationZ
X

rabðvÞ�abð~ttÞdx ¼
Z
oX

p 
 ~ttds ð20Þ

valid for all sufficiently regular ~tt defined in X.
(ii) the constitutive relation

rabðvÞ ¼ Aabkl�klðvÞ: ð21Þ

The local equations implied by (20) are

orabðvÞ
oxb

¼ 0 in X; ð22Þ

rabðvÞnb ¼ pa on oX: ð23Þ

The energy change EðXeÞ � EðXÞ can be found by the compound asymptotics method developed in
Mazja et al. (1991) and in Maz�ya and Nazarov (1987). This technique is recalled in the sequel.
Let us prove now that EðXeÞ � EðXÞP 0. According to the Castigliano principle we have

EðXeÞ ¼
1

2
min

Z
Xe

sabCabkls
kljs

�
¼ ðsabÞ 2 Se

	
;

EðXÞ ¼ 1
2
min

Z
X

sabCabkls
kljs

�
¼ ðsabÞ 2 S

	
:
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Here C ¼ A�1 and Se, S are the sets of statically determined stresses:

Se ¼ fs ¼ ðsabÞ 2 L2ðXe;M
2
s Þjdivs ¼ 0 in Xe; sabmb ¼ 0 on oxe; sabnb ¼ pa on oXg;

S ¼ fs ¼ ðsabÞ 2 L2ðX;M2
s Þjdivs ¼ 0 in X; sabnb ¼ pa on oXg:

Let rðeÞ and r are minimizers of the above problems. Let us introduce the extended field ~rr 2 S of the
following form,

~rrðxÞ ¼ rðeÞðxÞ if x 2 X n xe;
0 if x 2 xe:

�
Note that under some minimal regularity assumptions on the boundary of x we have ~rr 2 S since rab

ðeÞmb ¼ 0
on oxe. Therefore, we have the following inequality:

EðXÞ6 1

2

Z
X

~rrabCabkl~rr
kl dx ¼ 1

2

Z
Xe

rab
ðeÞCabklr

kl
ðeÞ dx ¼ EðXeÞ:

2.2. Asymptotic expansions by Maz’ya and Nazarov

To determine the change of energy EðXeÞ � EðXÞ for small e one should apply the compound asymp-
totics method to disclose the way the solution ue depends on e. Following Mazja et al. (1991) we represent
the field ue in the form

ueðxÞ ¼ tð0ÞðxÞ þ ewð1Þ x
e


 �
þ e2vð1ÞðxÞ þ e3wð2Þ x

e


 �
þ 
 
 
 ; ð24Þ

where tð0Þ ¼ t is the solution for the problem posed on the domain X (see (20) and (21)) and the next terms
introduce subsequent corrections to the boundary conditions on oxe and oX. It is assumed that

orabðvðiÞðxÞÞ
oxb

¼ 0; i ¼ 0; 1; 2; . . . ; ð25Þ

orab
y ðwðiÞðyÞÞ
oyb

¼ 0; i ¼ 1; 2; . . . ; ð26Þ

where y ¼ ðy1; y2Þ and
rab
y ðuÞ ¼ Aabkl�yklðuÞ; ð27Þ

�yklðuÞ ¼
1

2

ouk

oyl

�
þ oul

oyk

�
ð28Þ

for any differentiable u ¼ ðu1ðyÞ; u2ðyÞÞ.
The first approximation: ue

I � vð0Þ ¼ v satisfies (14) and (15) but violates (16). The second approximation:
ue
II � vþ ewð1Þðx=eÞ satisfies (14). The condition (16) could be satisfied with an error of order 0ðeÞ, as fol-
lows. We have

�abðue
IIÞ ¼ �abðvÞ þ �yabðwð1ÞÞ

���
y¼x=e

þ 0ðeÞ ð29Þ

and hence

rabðue
IIÞmb ¼ rab

y ðwð1ÞÞ
���
y¼x=e

mb þ Aabkl�klðvÞð0Þmb þ 0ðeÞ: ð30Þ
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Thus we require that

Aabkl�yklðwð1ÞÞmb ¼ �Aabkl�0klmb on ox; ð31Þ
where �0kl ¼ �klðvÞð0Þ. Note that the vector field wð1Þ is defined in R2 n x and satisfies (26) and (31). This field
depends linearly on the quantities �0kl, hence w

ð1Þ admits the representation

wð1ÞðyÞ ¼ �0klv
ðklÞðyÞ; ð32Þ

where the functions vðklÞ ¼ vðlkÞ are solutions to the boundary value problems

ðP ðklÞ
x Þ

������������

find vðklÞ defined in R2nx such that

Aabcd o
oyb

�ycdðvðklÞÞ ¼ 0 in R2nx; ð33Þ

Aabcd�ycdðvðklÞÞmb ¼ �Aabklmb on ox; ð34Þ
vðklÞ ! 0 if kyk ! 1: ð35Þ

The variational formulation as well as the existence and uniqueness results of the exterior problems of

linear elasticity can be found in Nazarov and Plamenevsky (1994). The related results on the polarization

tensor can be found in Nazarov (2000, 2001a,b) and Argatov (1998). From these sources one can read off

the mathematical details of how to construct appropriate function spaces in the domain R2 n x to assure the
existence of vðklÞ.

However, the proof of uniqueness is much easier and is worth reporting here.
Note first, that the functions vðklÞ

a admit the following expansion at infinity

vðklÞ
a ¼ Ckl

ab

yb

kyk þ 0ðkyk
�2Þ; ð36Þ

where kyk2 ¼ ðy1Þ2 þ ðy2Þ2 and Ckl
ab are constants. Let us write down the weak formulation of P

ðklÞ
x . Let the

circle BR of a radius R encompass the domain x. By multiplying (33) with ~vva and integrating over BR n x one
finds

Aabkl

Z
BRnx

�yklðvðjdÞÞ�yabð~vvÞdy ¼ Aabkl

Z
CR

�yklðvðjdÞÞnb~vva dsþ Aabjd

Z
ox

~vvamb ds; ð37Þ

where CR ¼ oBR. The term underscored above is of order 0ðkyk�2Þ. Thus, if R ! 1 the integral over CR

vanishes, provided that ~vva are sufficiently smooth and of bounded support. Passing to infinity: R ! 1 gives

the variational equation

Aabkl

Z
R2nx

�yklðvðjdÞÞ�yabð~vvÞdy ¼ Aabjd

Z
ox

~vvamb ds ð38Þ

valid for appropriately decaying trial fields ~vv.
Note that the right-hand side of (38) vanishes for ~vv 2 R. Let us put first ~vva ¼ v0a ¼ constant. ThenZ

ox
v0amb ds ¼ v0a

Z
x

o1

oyb
dy ¼ 0: ð39Þ

Let us take now ~vva ¼ eb
ayb or ~vv1 ¼ y2, ~vv2 ¼ �y1. The right-hand side of (38) equals

Aabjder
a

Z
ox

yrmb ds ¼ Aabjder
a

Z
ox

yr
oyb

oyk
mk ds: ð40Þ

SinceX
k

o2yb

oykoyk
yr ¼ 0
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we haveX
k

o

oyk

oyb

oyk
yr

� �

� oyb

oyk

oyr

oyk

�
¼ 0:

Integrating over x one findsZ
ox

oyb

oyk
yrmk ds ¼

X
k

Z
x

oyb

oyk

oyr

oyk
dy: ð41Þ

Hence we find a useful identityZ
ox

yrmb ds ¼ drbjxj; ð42Þ

where jxj represents the area of x. Due to symmetry of ðAabjdÞ with respect to the first two indices one notes
that the expression (40) vanishes. Since the right-hand side of (38) vanishes for all ~vv 2 R, the fields vðjdÞ are

uniquely determined.

Let us define the auxiliary vector fields

EðklÞðyÞ ¼ 1
2
ðykel þ ylekÞ; k; l 2 f1; 2g; ð43Þ

with components

EðklÞ
a ðyÞ ¼ 1

2
ðykdla þ yldkaÞ: ð44Þ

The strains associated with these fields form a unit tensor (2) in M4
s

�yabðEðklÞÞ ¼ I
kl
ab: ð45Þ

Here

I
kl
ab ¼ 1

2
ðdk

ad
l
b þ dl

ad
k
bÞ: ð46Þ

By virtue of (45) one can rewrite the conditions (34) as follows:

Aabkl�yklðvðjdÞ þ EðjdÞÞmb ¼ 0: ð47Þ

Let us introduce new fields

wðabÞðyÞ ¼ vðabÞðyÞ þ EðabÞðyÞ: ð48Þ
By (47) we see that these fields are solutions to the following problems

ðePP jd
x Þ

����������
find wðjdÞ defined in R2nx such that

Aabkl o
oyb

�yklðw
ðjdÞÞ ¼ 0 in R2nx; ð49Þ

Aabkl�yklðw
ðjdÞÞmb ¼ 0 on ox; ð50Þ

wðjdÞ ! EðjdÞ if kyk ! 1: ð51Þ

Let us come back to the asymptotic expansion (24). Substitution of (32) gives

ueðxÞ ¼ vðxÞ þ e�0klv
ðklÞ x

e


 �
þ e2vð1ÞðxÞ þ 
 
 
 ð52Þ
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In the vicinity of the boundary oxe the function vðxÞ has the following expansion:

vðxÞ ¼ vð0Þ þ �0klE
ðklÞðxÞ þ /rðxÞ þ 0ðe2Þ; ð53Þ

where rðxÞ ¼ ð1=2Þð�x2e1 þ x1e2Þ and / represents an angle of a rigid rotation in the (x1; x2) plane. The
terms underscored in (53) belong to the set R. Hence the strains are

�abðvÞ ¼ �0ab þ 0ðeÞ ð54Þ

and

�abðueÞ ¼ �0ab þ �0kl�
y
abðvðklÞÞ

���
y¼x=e

þ 0ðeÞ ð55Þ

or

�abðueÞ ¼ �0kl�
y
abðw

ðklÞÞ
���
y¼x=e

þ 0ðeÞ: ð56Þ

In the further use of the formulae above a deeper insight into the behavior of the functions vðklÞ
a is

necessary. This will be the subject of the subsequent section.

2.3. Tensor of Polya–Szeg€oo

The solutions of the problems P ðklÞ
x have the following expansions around y ¼ 1 (see Mazja et al., 1991)

vðjdÞ
r ðyÞ ¼ Mjdkl�yklðTðrÞðyÞÞ þ 0ðkyk�2Þ; ð57Þ

where the coefficients (Mjdkl) are constant and the vector fields Tð1Þ, Tð2Þ represent the displacement fields of

an infinite body subjected to the point loads bð1Þ ¼ dðyÞe1, bð2Þ ¼ dðyÞe2, respectively. The point loads are
concentrated at the origin y ¼ 0. Thus the components (TðrÞ) form the Somigliana or Kelvin solutions. They
satisfy the Lame equations

Aabi. o
2ðTðrÞÞi
oy.oyb

þ dardðy � 0Þ ¼ 0: ð58Þ

The fields ðTðrÞÞi can be found by performing the Fourier transform of Eq. (58). It occurs that these fields
include singularities of order 0ðln kykÞ, while the fields

UðabÞr ¼ �yabðTðrÞÞ; ð59Þ

include singularities of order 0ðkyk�1Þ.
The tensor of elastic moduli of an isotropic body in the 2D problem (both: the plane strain and plane

stress) is represented by

A ¼ 2kK1 þ 2lK2; ð60Þ

where k and l are bulk and shear moduli and the operators K1, K2 are given by (7). The components of the

Somigliana solutions are expressed by (see Hahn, 1985, p. 274)

ðTðrÞðyÞÞa ¼
1

4plðk þ lÞ

"
� ðk þ 2lÞdra ln kyk þ k

yrya

kyk2

#
: ð61Þ

The components (Mjdkl) entering (57) form the Polya–Szeg€oo tensor, similar to that introduced in the
potential theory (see Schiffer and Szeg€oo, 1949; Schiffer, 1956). The notion: ‘‘Polya–Szeg€oo tensor’’ is used in
Mazja et al. (1991) and Movchan and Movchan (1995, Section 5.1).
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Since the fields vkl
a are of length dimension the components (Mjdkl) are of force dimension (N ). These

components depend on the shape of x and on the moduli k and l. Thus there exists a non-dimensional
tensor fMM such that

M ¼ jxjkfMM : ð62Þ
Knowing the fields vðjdÞ and the Somigliana vectors TðrÞ and imposing the following symmetry properties

Mjdkl ¼ Mkljd; Mjdkl ¼ Mdjkl; Mjdkl ¼ Mjdlk ð63Þ
one can determine the components (Mjdkl) directly from the representation (57). Alternatively, these com-

ponents are expressed by the following integral formulae

ðiÞ Mjdrc ¼ �Aabjd

Z
ox

wðrcÞ
a mb ds; ð64Þ

ðiiÞ Mjdrc ¼ �Ajdrcjxj �Mjdrc; ð65Þ
where

Mjdrc ¼ Aabkl

Z
R2nx

�yklðvðjdÞÞ�yabðvðrcÞÞdy ð66Þ

or

Mjdrc ¼ Aabjd

Z
ox

vðrcÞ
a mb ds: ð67Þ

Tensor M is analogous to the mass matrix tensor of Polya and Szeg€oo (see Schiffer and Szeg€oo, 1949).
In a different, vectorial notation, according to which the tensors M and M are of the rank two and of

dimension 6� 6, the formulae (64)–(67) have been derived in Mazja et al. (1991). Due to some technical
reasons, in order to emphasize new subtle arguments, it is thought appropriate to give below the complete
derivation of the formulae (64)–(67).

Proof of (i). Let us encompass the domain x by a circle BR (see Section 2.2). The fields wðrcÞ satisfy an

equation of the form similar to (37)

Aabkl

Z
BRnx

�yklðw
ðrcÞÞ�yabðv̂vÞdy ¼ Aabkl

Z
CR

�yklðw
ðrcÞÞnbv̂va ds ð68Þ

valid for sufficiently regular fields v̂va. The boundary conditions (50) have been taken into account.

Let us put ~vv ¼ wðrcÞ into (37) and v̂v ¼ vðjdÞ into (68). Thus we arrive at two identities of the same left-hand
sides. Equating the right-hand sides gives the formula

Njdrc ¼ �Aabjd

Z
ox

wðrcÞ
a mb ds; ð69Þ

where

Njdrc ¼ Aabkl

Z
CR

�yklðvðjdÞÞwðrcÞ
a

h
� �yklðw

ðrcÞÞvðjdÞ
a

i
nb ds: ð70Þ

Thus the tensor N does not depend on R. The components Njdrc will be found by passing with R to
infinity in the formula (70). By (48) and (57) we note that

wðrcÞ
a

��
CR

¼ EðrcÞ
a þ 0ðR�1Þ; ð71Þ
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�yklðw
ðrcÞÞ

��
CR

¼ I
rc
kl þ 0ðR�2Þ; ð72Þ

and substitute these expressions into (70). By disregarding the terms that do not contribute to the final

result, we obtain

Njdrc ¼ lim
R!1

Aabkl

Z
CR

�yklðvðjdÞÞEðrcÞ
a

h
� vjd

a I
rc
kl

i
nb ds ð73Þ

and substitution of the representation (57) gives

Njdrc ¼ Mjdi.grc
i. ; ð74Þ

grc
i. ¼ Aabkl lim

R!1

Z
CR

�yklðU ði.ÞÞEðrcÞ
a

h
� Uði.ÞaI

rc
kl

i
nb ds: ð75Þ

Here

ðU ði.ÞÞ ¼
X

r

Uði.Þrer ð76Þ

and Uði.Þ1, Uði.Þ2 are defined by (59). Our aim is to show that

grc
i. ¼ Irc

i. : ð77Þ

The key idea of the proof is to make use of the variational counterpart of the Somigliana equation (58)Z
BR

Aabi.Uði.Þr�
y
abðuÞdy ¼ uð0Þ 
 er þ

Z
CR

Aabi.Uði.Þrnbua ds: ð78Þ

Let us remind that the components of the point loads bðaÞ are bðaÞk ¼ dakdðyÞ. The hyperforce

sðklÞ ¼
X

a

�yklðbðaÞÞea ð79Þ

is applied at the point 0 ¼ ð0; 0Þ; the indices k and l are viewed here as fixed. The components of sðklÞ are

given by

sðklÞ
a ¼ 1

2

o

oyl
ðdakdðyÞÞ



þ o

oyk
ðdaldðyÞÞ

�
or

sðklÞ
a ¼ 1

2
dak

od
oyl

�
þ dal

od
oyk

�
: ð80Þ

We note that the force sðklÞ brings about the displacement field U ðklÞ given by (76) and (59). This dis-
placement field satisfies the variational equation (78) in which the force bðrÞ is now replaced with sðklÞ. It

readsZ
BR

Aabi.�yi.ðU ðklÞÞ�yabðuÞdy ¼ hsðklÞ;ui þ
Z

CR

Aabi.�yi.ðU ðklÞÞnbua ds; ð81Þ

where ua denotes the components of the vector test function u.

Let us define the mollifier

/hðyÞ ¼ h�2/
y
h


 �
; ð82Þ
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where h is a small positive number and

/ðxÞ ¼ C exp½�1=ð1� kxk2Þ� if kxk < 1;
0 if kxkP 1:

�
ð83Þ

Constant C is chosen such thatZ
R2

/ðxÞdx ¼ 1;
Z
R2

/hðyÞdy ¼ 1: ð84Þ

Let us introduce the pseudoforces s
ðklÞ
h of components ðsðklÞ

h Þa given by (80) with dðyÞ replaced by /hðyÞ.
These pseudoforces bring about the displacement fields Uh

ðklÞ of components ðUh
ðklÞÞr ¼ �yklðTh

ðrÞÞ which
satisfy the variational equation

Aabi.

Z
BR

�yi.ðUh
ðklÞÞ�

y
abðuÞdy ¼

Z
BR

u 
 sðklÞ
h dy þ Aabi.

Z
CR

�yi.ðUh
ðklÞÞnbua ds ð85Þ

for sufficiently regular u. Let us substitute u ¼ EðjdÞ to obtain

Aabi.

Z
BR

�yi.ðUh
ðklÞÞdy ¼

Z
BR

EðjdÞ 
 sðklÞ
h dy þ Aabi.

Z
CR

�yi.ðUh
ðklÞÞEðjdÞ

a nb ds: ð86Þ

Note that the stresses rab
y ðEðjdÞÞ satisfy the homogeneous equations of equilibrium. Thus the following

variational equation holds

Aabi.

Z
BR

�yi.ðEðjdÞÞ�yabð~vvÞdy ¼ Aabi.

Z
CR

�yi.ðEðjdÞÞnb~vva ds ð87Þ

for sufficiently regular ~vva. Let us substitute ~vv ¼ Uh
ðklÞ to obtain

Aabjd

Z
BR

�yabðUh
ðklÞÞdy ¼ Aabjd

Z
CR

Uh
ðklÞanb ds: ð88Þ

By equating the right-hand sides of (86) and (88) one finds

Aabi.

Z
CR

�yi.ðUh
ðklÞÞEðjdÞ

a

h
�Uh

ðklÞaI
jd
i.

i
nb ds ¼ �

Z
BR

EðjdÞ 
 sðklÞ
h dy ð89Þ

Let us pass with h to zero. The left-hand side of (89) tends to gjd
kl defined by (75). Let us find the product:

EðjdÞ 
 sðklÞ
h . To this end let us compute

u 
 sðklÞ
h ¼ uaðs

ðklÞ
h Þa ¼

1

2
uk

o/h

oyl

�
þ ul

o/h

oyk

�
¼ �yklð/huÞ � �yklðuÞ/hðyÞ:

HenceZ
BR

u 
 sðklÞ
h dy ¼

Z
BR

�yklð/huÞdy �
Z
BR

�yklðuÞ/hðyÞdy ! ��yklðuÞð0Þ ð90Þ

if h & 0. Therefore, the right-hand side of (89) tends to �yklðEðjdÞÞ ¼ Ijd
kl, which proves (77). Substitution of

(77) into (74) gives N ¼ M , with N being defined by (69). The thesis (i) or the formula (64) is proved. �

Proof of (ii). We substitute ~vv ¼ vðrcÞ into the variational equation (37). We note thatZ
CR

�yklðvðjdÞÞvðrcÞ
a nb ds ! 0 ð91Þ
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when R ! 0. Indeed, �yklðvðjdÞÞ ¼ 0ðR�2Þ and vðrcÞ
a ¼ ðR�1Þ, ds ¼ Rdh. Thus the above result holds. Con-

sequently, one finds

Aabkl

Z
R2nx

�yklðvðjdÞÞ�yabðvðrcÞÞdy ¼ Aabjd

Z
ox

vðrcÞ
a mb ds ð92Þ

which proves that both the derivations (66) and (67) of the tensor M are equivalent.

Let us substitute (48) into (64) and make use of notation (67). One obtains

Mjdrc ¼ �Aabjd

Z
ox

EðrcÞ
a mb ds�Mjdrc: ð93Þ

By using (44) and (42) one computesZ
ox

EðrcÞ
a mb ds ¼

1

2

Z
ox
ðycdar þ yrdacÞmb ds ¼

1

2
dar

Z
ox

ycmb dsþ
1

2
dac

Z
ox

yrmb ds

¼ 1
2

dardcbjxj þ 1
2

dacdrbjxj ¼ I
rc
abjxj ð94Þ

which confirms (65). The thesis (ii) is proved. �

The symmetry properties (63) are direct consequences of the formula (65). Let us consider a quadratic

form

f ðqÞ ¼ qabð�MabklÞqkl; q 2 M2
s : ð95Þ

By (65) and (66) we have

f ðqÞ ¼ qjdAjdrcqrcjxj þ
Z
R2nx

�yklð/ÞAklab�yabð/Þdy ð96Þ

with / ¼ qabv
ðabÞ. Since vðabÞ 62 R we know that �yklðqÞ 6¼ 0. The estimate (12) implies f ðqÞ > 0 if q 6¼ 0. Thus

the tensor M is negative definite.

The role of the tensor M will be cleared up in the subsequent section.

2.4. Change of energy according to Mazja et al.

The compound asymptotics method makes it possible to solve the problems of perturbation of a large

class of shape functionals (see Nazarov and Sokołowski, 2003). Change of the energy functional for the

Neumann problem, brought about by drilling of a small cavity, was first determined in Maz�ya and
Nazarov (1987). The similar perturbation problem for the linear elasticity was considered in Mazja et al.

(1991). However, the final result is not reported in this book. This final result is recalled by Movchan and

Movchan (1995, Section 5.1.3), where a reference is made to an unavailable paper by Zorin et al. (1989).

This final result reads

EðXeÞ ¼ EðXÞ � 1
2

e2�0abM
abkl�0kl þ oðe2Þ; ð97Þ

where EðXeÞ and EðXÞ have been defined by (18) and (19) and represent the elastic energies stored in the
body with a hole and without a hole, respectively. Moreover, �0ab ¼ �abðvÞð0Þ represent strains measured in a
body without a hole at the point where the hole starts to nucleate.

Since the derivation of the formula (97) is still unpublished in the available literature, it is thought

appropriate to present it in detail. By (17) and (18) the energy stored in the body with a hole equals

EðXeÞ ¼
1

2

Z
oX

p 
 ue ds: ð98Þ
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Substitution of (24) into (98) must be done with care. By (57) we have

vðjdÞ
r

x
e


 �
¼ eMjdkl�klðTðrÞðxÞÞ þ e20ðkxk�2Þ: ð99Þ

Substitution into (24), with making use of (32) gives

ueðxÞ ¼ vðxÞ þ e2~uuðxÞ þ e30ðkxk�2Þ þ oðe2Þ ð100Þ

with

~uuðxÞ ¼ �0klM
klcdUx

ðcdÞðxÞ þ vð1ÞðxÞ: ð101Þ

Here

Ux
ðcdÞ ¼ �cdðTð1ÞÞ; �cdðTð2ÞÞ

� �
:

The term underscored in (100) must satisfy the homogeneous boundary condition

rabð~uuÞnb ¼ 0 on oX: ð102Þ
Moreover, by (25) we have

o

oxb
rabðvð1ÞÞ ¼ 0 in X: ð103Þ

Consequently, the function vð1Þ satisfies (103) and the non-homogeneous boundary condition on oX

rabðvð1ÞÞnb ¼ ��0klM
klcdrabðUx

ðcdÞÞnb on oX: ð104Þ

By analogy with the variational equation (81) one finds the variational equation for Ux
ðcdÞ

Aabi.

Z
X
�i.ðUx

ðcdÞÞ�abðuÞdx ¼ hsðcdÞ;ui þ
Z
oX

rabðU x
ðcdÞÞnbua ds; ð105Þ

where u is an appropriately regular function defined in R2 and (see (90))

hsðcdÞ;ui ¼ lim
h&0

hsðcdÞh ;ui ¼ ��cdðuÞð0Þ: ð106Þ

By (103) and (104) we note that vð1Þ admits the following representation

vð1Þ ¼ Mklcd�0klzðcdÞðxÞ; ð107Þ

where the functions zðcdÞ ¼ zðdcÞ satisfy

ðePP cd
1xÞ

�������
o

oxb
rabðzðcdÞÞ ¼ 0 in X; ð108Þ

rabðzðcdÞÞnb ¼ �rabðUx
ðcdÞÞnb on oX ð109Þ

and sigma rabð
Þ are given by (11).
Substitution of (107) into (101) gives

~uu ¼ �0klM
klcdðUx

ðcdÞ þ zðcdÞÞ: ð110Þ

The functions zðcdÞ satisfy the following variational equationZ
X
Aabi.�i.ðzðcdÞÞ�abðuÞdx ¼ �

Z
oX

rabðUx
ðcdÞÞnbua ds: ð111Þ
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On combining Eqs. (111) and (105), and using (106) one finds

Aabi.

Z
X
�i.ðzðcdÞ þUx

ðcdÞÞ�abðuÞdx ¼ ��cdðuÞð0Þ: ð112Þ

Let us put u ¼ v in (112) and ~vv ¼ zðcdÞ þUx
ðcdÞ in (20). HenceZ

oX
p 
 ðzðcdÞ þUx

ðcdÞÞds ¼ ��0cd; ð113Þ

which is a consequence of Betti�s theorem. Taking into account (110) one findsZ
oX

p 
 ~uuds ¼ ��0klM
klcd�0cd: ð114Þ

Substitution of (100) into (98) and making use of (114) gives the desired result (97). Since M is negative

definite we note that EðXeÞ > EðXÞ, irrespective of the shape of the hole xe.
The energy change EðXeÞ � EðXÞ could alternatively be expressed in terms of the stress field ðr� abÞ. In-

stead of (97) one can write

EðXeÞ ¼ EðXÞ þ 1
2

e2r
� jdHjdclr

� cl þ oðe2Þ; ð115Þ

where r
� jd ¼ Ajdcl�0cl and the tensor H is linked with the tensor M by

Hjdcl ¼ �CjdabMabkmCkmcl ð116Þ
or H ¼ �CMC . Here C ¼ A�1 or

CabklAklcd ¼ I
cd
ab: ð117Þ

Let us introduce new vector fields in R2 n x:

UðrcÞðyÞ ¼ Crcjdw
ðjdÞðyÞ; ð118Þ

where wðjdÞ are solutions of the problems ePP ðklÞ
x (cf. Section 2.2). The fields (118) are solutions to the fol-

lowing exterior problems

P̂Px
ðrcÞ

�����������

find UðrcÞ defined in R2nx such that

Aabkl o
oyb

�yklðUðrcÞÞ ¼ 0 in R2nx; ð119Þ
Aabkl�yklðUðrcÞÞmb ¼ 0 on ox; ð120Þ
rab

y ðUðrcÞÞ ! I
ab
rd if kyk ! 1: ð121Þ

One easily notes that the formulation of the problems above is a direct consequence of the formulationePP ðklÞ
x , of the definition (118) and of the properties (117) and (118).

Substitution of (64) into (116) gives

Hjdcl ¼
Z
ox

UðclÞjmd ds: ð122Þ

By using symmetry properties (63), that refer also to the tensor H , one can rearrange the above expression
as follows:

Hjdcl ¼ 1
2

Z
ox

UðclÞjmd

�
þ UðclÞdmj

�
ds: ð123Þ
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The following representation proves useful

H ¼ jxjfHH ; ð124Þ
where dimensions of fHH are the same as dimensions of tensor C of elastic flexibilities.

Solutions to the problems bPP x
ðrcÞ, for various shapes of x, are reported in the known monographs on stress

concentration around holes (see e.g. Savin, 1968). Upon finding the fields UðclÞ one can easy compute

(Hjdcl) by (122).

Lastly, note that the energy change can be expressed in the form

EðXeÞ � EðXÞ ¼ 1
2

e2jXjr� abe
�
ab; ð125Þ

where

e
�
ab ¼ 1

2jXj

Z
ox
ðu0amb þ u0bmaÞds ð126Þ

with u0 ¼ r
� abUðabÞ.

3. The Eshelby method

The remote strain field given in a form of an mth order polynomial in x ¼ ðx1; x2Þ induces in an ellipsoidal
inclusion a strain field being also an mth order polynomial. This result of Kunin and Sosnina (1971)
generalizes the result of Eshelby (1957) concerning the case of m ¼ 0. This last result, along with R. Hill�s
concept of smearing-out non-homogeneities was a basement for the energy methods of assessing overall

properties of composite materials.

Following Christensen (1979), Nemat-Nasser and Hori (1993) and Jasiuk et al. (1994, Eq. 35) we recall
the Eshelby formula for the change of energy due to the appearance of a hole in a body X, subjected to
stresses r

� ab

EðX n xÞ ¼ EðXÞ þ 1
2

r
� ab

Z
ox

u0amb ds; ð127Þ

where u0a ¼ ðu01; u02Þ is the displacement field induced by ðr� abÞ. One can write

EðX n xÞ ¼ EðXÞ þ 1
2

r
� abe

�
abjXj; ð128Þ

e
�
ab ¼ 1

2jXj

Z
ox
ðu0amb þ u0bmaÞds: ð129Þ

Let us emphasize a similarity between the formulae (128), (129) and (103), (125). The formula (128) is

effective if the relation e
�
abðr0Þ is known. Due to linearity a tensor H exists such that

e
�
ab ¼ Habklr

� kl ð130Þ
(see Nemat-Nasser and Hori, 1993). In the paper by Kachanov et al. (1994) the tensor H is called a cavity

compliance tensor. Putting e ¼ 1 in (115) one finds

H ¼ 1

jXjH ð131Þ

or

H ¼ pfHH ; p ¼ jxj
jXj ; ð132Þ

T. Lewi�nnski, J. Sokołowski / International Journal of Solids and Structures 40 (2003) 1765–1803 1781



cf. (124); p represents the area fraction of the hole and will be called porosity. Substitution of (130)–(132)
into (128) gives

EðX n xÞ ¼ EðXÞ þ 1
2
pjXjr� kl eHHklabr

� ab: ð133Þ

The tensors H and the Eshelby tensor S, as defined in Mura (1982, Eq. (11.15)) and Nemat-Nasser and
Hori (1993, Section 7.3.3) are interrelated by

H ¼ pðI� SÞ�1A�1: ð134Þ

Particular forms of this tensor for holes of different shapes are reported in Tsukrov and Kachanov

(2000), Kachanov et al. (1994), Kachanov (1999), Sevostianov and Kachanov (1999), Shafiro and

Kachanov (1999). The formula (134) holds both for the 3D and 2D cases.

4. Energy change due to the appearance of a circular hole. The topological derivative method for the plane

elasticity problem

4.1. Topological derivative of shape functionals

The notion of a topological derivative has been introduced in Sokołowski and _ZZochowski (1999a,b) in
order to formulate necessary conditions of optimality for optimum shape design problems. If the shape

functional for the elasticity problem represents the compliance of the body, then the relevant topological

derivative determines an infinitesimal change of energy, brought about by the appearance of a circular hole

or a spherical cavity. Thus the theory of the topological derivative is linked with the problem of evaluating
the change of energy due to the appearance of holes or cavities.

Assume that JðXÞ is a shape functional, while the shape design problem has the form

JðX�Þ ¼ inf
X

JðXÞ: ð135Þ

The optimal domain X� satisfies the following set of necessary optimality conditions.

On the boundary oX� of X�

dJðX�;VÞP 0 ð136Þ

for each admissible vector fields V ; the Eulerian semiderivative dJ is explained in Sokołowski and Zolesio
(1992).

In the interior of the domain X�

TðxÞP 0 in X�: ð137Þ

Here TðxÞ represents the topological derivative defined by

TðxÞ ¼ lim
e&0

JðX n xeðxÞÞ � JðXÞ
jxeðxÞj

; ð138Þ

where xeðxÞ is here a circle of centre in x 2 X and of radius ea. Thus jxeðxÞj ¼ pe2a2. We refer the reader to
Sokołowski and _ZZochowski (2001a,b) for the proof in the scalar case.
The same ideas can be applied to 3D shape optimization problems (cf. Sokołowski and _ZZochowski,

2001a,b).
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4.2. Topological derivative of the energy functional

Assume that xe is a circle defined above. Let u
e be the unknown displacement field of the elasticity

problem of Section 2.1. The potential energy of the body is given by the following shape functional

JðX n xeÞ ¼
1

2

Z
Xnxe

Aabkl�klðueÞ�abðueÞdx�
Z
oX

p 
 ue ds ð139Þ

the function jðeÞ ¼ JðX n xeÞ admits the following expansion (see Sokołowski and _ZZochowski, 1999a,b):

jðeÞ ¼ jð0Þ þ 1
2

e2j00ð0þÞ þ oðe2Þ; ð140Þ

where jð0Þ ¼ JðXÞ refers to the problem posed on the virgin domain

jð0Þ ¼ � 1
2

Z
oX

p 
 vds ð141Þ

with v being a solution to the problem (21)–(23). In the case of the body being isotropic the tensor A is given
by (60) and the quantity j00ð0þÞ equals

j00ð0þÞ ¼ � pa2eEE ðr� I
h

þ r
�
IIÞ2 þ 2ðr

�
I � r

�
IIÞ2

i
; ð142Þ

where

eEE ¼ 4kl
k þ l

ð143Þ

represents the effective Young modulus for the 2D setting. The quantities r
�
I, r

�
II are principal stresses for the

stress field ðr� abÞ (see (115)).
The expansion (140), along with (142), can be expressed in the form (115) with the tensor H assuming the

following isotropic form

H ¼ 2pa
2eEE ðK1 þ 2K2Þ; ð144Þ

with Ka defined by (7). The same formula for the energy change has been recently reported in Garreau et al.
(2001), where a similar perturbation method has been used.

4.3. On perturbation of other shape functionals

Contrary to the compound asymptotics method and the Eshelby method, the topological derivative

method makes it possible to examine perturbation of functionals other than the energy functional. The

perturbation is understood as the appearance of a small circular hole within the domain considered. In

particular, the topological derivatives of the following shape functionals were found in Sokołowski and
_ZZochowski (1999a,b).

J1ðXeÞ ¼
Z

Xe

ðue
aB

abue
bÞ

q
dx; ð145Þ

J2ðXeÞ ¼
Z

Xe

rabðueÞRabklr
klðueÞ

� �q
dx; ð146Þ

q ¼ 1 or q ¼ 2; the matrices B 2 M2
s , R 2 M4

s are assumed to be positive definite.
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The topological derivatives of these functionals involve not only the field v, but also an other field being a
solution to the appropriate adjoint problem. In the case of the energy functional both the original and

adjoint problems coincide. For the details the reader is referred to Sokołowski and _ZZochowski (1999a,b).
An equivalent but different approach has been proposed by Garreau et al. (2001).
In the paper by Nazarov and Sokołowski (2003) the compound asymptotics method and the matched

asymptotics method are applied to the so-called elliptic problems with the polynomial property. An ap-

proximation of the solution to such systems is defined with a prescribed precision which is controlled by the

degree of certain polynomials. Such approximation is defined in the domain without any cavity; in the

paper the space dimension nP 3 is fixed in order to simplify the presentation. Using the approximate

solution in the domain with the cavity of the size e > 0 it is possible to expand the shape functionals and
identify the first term of the expansion which is exactly the topological derivative in the sense considered

here provided that the Neumann type homogeneous boundary conditions are prescribed on the cavity.
Such an approach is general and may be used to identify the form of the expansion for an arbitrary elliptic

boundary value problem. The estimates in H€oolder weighed spaces are also obtained for the remainder terms
in the expansion.

5. Sensitivity of energy due to homothetic changes of shapes of holes and cavities

5.1. Sensitivity analysis of shape functionals: Case of holes and cavities of arbitrary shape

We come back to the setting of the problem considered in Section 2.1, where e indexes the family of
domains Xe and the boundary value problems for the unknown ue field. We generalize the notion of the

topological derivative of shape functionals by admitting the non-circular holes and non-spherical cavities.
We modify the approach similar to that of Sokołowski and _ZZochowski (1999a,b) and assume that the
formula (138) represents such a definition with x being arbitrary. If x is defined as in Section 2.1, then the
definition (138) refers to the point x ¼ 0. Possible shifting to other points from X is straightforward. Thus
all holes or cavities xeðxÞ are formed around the point x 2 X and all of them are homothetic to each other.
A similar approach for the Neumann problem has been proposed in Lewi�nnski and Sokołowski (2000).

5.2. Topology derivative of the energy functional

The aim of this section is to find the topological derivative of the energy functional J for the 2D case
ðn ¼ 2Þ and its counterpart for n ¼ 3:

JðX n xeÞ ¼
1

2

Z
Xnxe

Aijkl�ijðueÞ�klðueÞdx�
Z
oX

p 
 ue dS; ð147Þ

where X, xe and x are here 3D domains and ue solves the relevant 3D elasticity problem. As before 0 2 xe

and xe is defined by (24) for x 2 Rn, n ¼ 2, 3.
It is clear that

jxej ¼ enjxj; joxej ¼ en�1joxj; ð148Þ

where jxj and joxj represent the volume (area) and the area (length) of open sets x and ox, for n ¼ 3 or 2,
respectively.

Let us consider the definition (138) in the case of x ¼ 0; it means that a cavity or a hole appears at the

point x ¼ 0 2 X. Similarly to Section 4.2 we introduce the function jðeÞ ¼ JðX n xeÞ, where e should not
exceed a value emax to fulfil the condition: xe 
 X.
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By using (148) one can rearrange the definition (138) as follows:

Tð0Þ ¼ 1

jxj lime&0þ
JðXeÞ � JðXÞ

en
: ð149Þ

For e ¼ 0 we denote Xe¼0 ¼ X.
Now we compute

Tð0Þ ¼ 1

jxj lime&0þ
djðeÞ
dðenÞ ¼

1

jxj
1

n
lim
e&0þ

1

en�1
djðeÞ
de

: ð150Þ

Therefore, in order to compute Tð0Þ it is sufficient to determine j0ðeÞ and find the limit: lime&0þðj0ðeÞ=en�1Þ.
Evaluation of j0ðeÞ: To this end we use the velocity method of shape optimization (cf. Sokołowski and

Zolesio, 1992). We recall that the shape derivative of the shape functional is defined in the following

manner.
Let there be given a vector field V and the associated flow mapping: Ts : R

n ! Rn of the form

TsðVÞðX Þ ¼ xðs;X Þ; ð151Þ

where

dxðsÞ
ds

¼ Vðs; xðsÞÞ;

xð0Þ ¼ X
ð152Þ

and the image of Xe is denoted by TsðXeÞ. Then the Eulerian semiderivative of the shape functional JðXeÞ in
the direction of the field V is defined by

dJðXe;VÞ ¼ lim
s&0

1

s
JðTsðXeÞÞ½ � JðXeÞ�: ð153Þ

To find j0ðeÞ one should construct the mapping Ts in such a way that TsðXeÞ ¼ Xeþs. This means, in par-

ticular, that

xeþs ¼ TsðxeÞ; xe ¼ T�1
s ðxeþsÞ ð154Þ

for jsj6 ð1=2Þe. It is sufficient to choose the speed vector field in the form

Vðs; xÞ ¼ x
e þ s

ð155Þ

for jsj6 ð1=2Þe and x lying in an open neighborhood of oxe. The field V is extended to R
n in such a way that

it is a smooth vector function of both the arguments. Moreover, we assume that 0 62 suppV and V vanishes
along oX.
Now we proceed to find j0ðeÞ. Let us first define the field ðueÞ0 as follows:

ðueÞ0 ¼ lim
s&0

1

s
ðueþs � ueÞ:

Here ueþs represents the solution to the problem (17) with Xe replaced by Xeþs when n ¼ 2 and the case of
n ¼ 3 is treated in the same way. The shape derivative ðueÞ0 solves the problem below (see Sokołowski and
Zolesio, 1992): find ðueÞ0 defined in Xe such thatZ

Xe

rððueÞ0Þ : �ð~vvÞdx ¼
Z
oxe

PsrðueÞ : Psðr~vvÞ
h i bVV 
 mdSðxÞ
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for sufficiently regular ~vv. Here Psa is a projection of a 2 M2
s on the plane tangent to oxe. The quantity

PsðrvÞ is in Sokołowski and Zolesio (1992) denoted by rsv. Moreover, bVV ¼ Vð0; xÞ.
Let us recall the definition of jðeÞ

jðeÞ ¼ � 1
2

Z
Xe

rðueÞ : �ðueÞdx:

The first derivative of jðeÞ for e > 0:

j0ðeÞ ¼ d

ds
JðTsðXeÞÞ

����
s¼0

is expressed by the following formula:

j0ðeÞ ¼ �
Z

Xe

rððueÞ0Þ : �ðueÞdxþ 1
2

Z
oxe

rðueÞ : �ðueÞ bVV 
 mdSðxÞ:

The sign (þ) in the last term follows from m being directed inward Xe. By taking ~vv ¼ ue in the variational
equation for ðueÞ0 and noting that

PsrðueðxÞÞ : PsðrueðxÞÞ ¼ rðueðxÞÞ : �ðueðxÞÞ for x 2 S

we simplify the expression for j0ðeÞ to the form

j0ðeÞ ¼ � 1
2

Z
oxe

rðueÞ : �ðueÞ bVV 
 mdSðxÞ: ð156Þ

Note that bVV ¼ x=e (see (155)). Moreover, dSðxÞ ¼ en�1 dSðyÞ, y ¼ x=e 2 ox.
Changing the variables in (156) one finds

j0ðeÞ ¼ � 1
2

en�1
Z
ox

rðueðeyÞÞ : �ðueðeyÞÞy 
 mðyÞdSðyÞ: ð157Þ

Evaluation of the limit for e & 0þ. Using the above expression and the result (150) one finds

Tð0Þ ¼ � 1

2njxj lime&0þ

Z
ox

rðueðeyÞÞ : �ðueðeyÞÞy 
 mðyÞdSðyÞ: ð158Þ

This results in the following expansion of the shape functional JðXeÞ in the direction V such that

V 
 m ¼ y 
 m,
JðXeÞ ¼ JðXÞ þ enjxjTð0Þ þ oðenÞ: ð159Þ

In the 2D case (n ¼ 2) we can specify the expression (158) by using the asymptotic result (56), to obtain

Tð0Þ ¼ 1

2jxj �
0
cdG

cdi.�0i.; ð160Þ

where the tensor G is defined by

Gcdi. ¼ � 1
2
Aabkl

Z
ox

�yabðw
ði.ÞÞ�yklðw

ðcdÞÞy 
 mds: ð161Þ

Upon substitution of (48) one can express the components of G as follows:

Gi.cd ¼ �Ai.cdjxj � Aabkl

Z
ox

cði.ÞðcdÞabkl ðvÞy 
 mds ð162Þ
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with

cði.ÞðcdÞabkl ðvÞ ¼ 1
2

I
i.
ab�

y
klðvðcdÞÞ

h
þ I

cd
kl�

y
abðvði.ÞÞ þ �yabðvði.ÞÞ�yklðvðcdÞÞ

i
: ð163Þ

The functions vðcdÞ are solutions to the problems P ðcdÞ
x (Section 2.2). It can be shown that for sufficiently

regular shapes of x the directional derivative Tð0Þ becomes the first term of asymptotic expansion and it

gives rise to the expansion of the elastic energy

EðXeÞ ¼ EðXÞ � 1
2

e2�0abG
abkl�0kl þ oðe2Þ: ð164Þ

Let W ¼ �0klw
ðklÞ. Then the formula (164) assumes the form

EðXeÞ � EðXÞ ¼ 1
2

e2Aabkl

Z
ox

�yabðWÞ�yklðWÞy 
 mdsþ oðe2Þ: ð165Þ

By virtue of the positive definiteness property (12) one can estimate

EðXeÞ � EðXÞP
c
2

e2
Z
ox

k�yðWÞk2y 
 mds: ð166Þ

Note that wðklÞ 62 R, hence W 62 R. Let us recall that the domains x for which y 
 m > 0, possibly with
exception of corner points of ox, are called star-shaped. Thus the star-shaped property implies that

EðXeÞ > EðXÞ. In other cases the estimate (166) is not helpful. Let us recall that the formula (97) provided
us with a stronger result of the difference EðXeÞ � EðXÞ being positive irrespective of the shape of ox. Now
we arrive at two seemingly different estimates of change of energy ((97) and (164)). Fortunately, there is no

ambiguity here. Only recently Nazarov and Sokołowski (2003) proved that G ¼ M for arbitrary shapes of

ox. Since the proof is being published in the paper mentioned above it is sufficient to give only an outline of
the proof. Let us recall the operator

rab
y ðuÞ ¼ Aabkl�yklðuÞ

and let C represent any contour encircling the contour ox. The proof is based upon the contour integral

1

2

Z
C
½var

ab
y ðuÞnb � uar

ab
y ðvÞnb�ds

being path independent. We choose u ¼ wðcdÞ and v ¼ yaðo=oyaÞðwðiqÞÞ.
First this integral is evaluated along ox by multiple using of the properties (49) and (50). The result

assumes the form (161). Then, this integral is evaluated along a circle of radius R and eventually computed
for R tending to infinity, by using asymptotic behavior of wðabÞ at infinity. The result occurs to be equal to

M cdiq. This proves the equality M ¼ G .

5.3. A link to the bubble method by Eschenauer et al.

In this section we show that the expression (160) defines the characteristic function of the bubble method

(see Eschenauer et al., 1994). The plane problem is considered (n ¼ 2).
By using (118) one can rearrange the formula (164) as follows:

EðXeÞ ¼ EðXÞ þ 1
2

e2r
� ab bHHabklr

� kl þ oðe2Þ ð167Þ
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with bHH ¼ �CGC or

bHHi.cd ¼
1

2
Cabkl

Z
ox

rab
y ðUði.ÞÞrkl

y ðUðcdÞÞy 
 mds: ð168Þ

The boundary condition (120) makes the above formula simpler

bHHi.cd ¼
1

2

Z
ox

CssssðsÞrss
y ðUði.ÞÞrss

y ðUðcdÞÞy 
 mds ð169Þ

with CssssðsÞ and rss being the components of C and r referred to the basis ðm; sÞ along ox. One notes thatbHH depends only on the hoop stresses associated with the fields UðabÞ. The equality M ¼ G implies H ¼ bHH
for all shapes of x.
In the case of isotropy the hoop stresses rssðUðabÞÞ are independent of both the moduli k and l, which

follows from the well-known Michell�s theorem.
Let us note that the quadratic form r

� ab bHHabklr
� kl differs in a factor from the characteristic function of the

bubble method (see Schumacher, 1995, Eq. (4.11)).

6. Elliptical hole in an isotropic body: Plane problem

6.1. Exact solutions to the exterior problems bPPx
ðrcÞ

We consider a plane, infinite isotropic and homogeneous body of moduli k and l (see (60)) occupying an
exterior of the ellipse x whose contour is given by

y1
a


 �2
þ y2

b


 �2
¼ 1: ð170Þ

Here a and b are half-lengths of the major and minor axes of the ellipse. Let

l ¼ 1
2
ðaþ bÞ; c ¼ a� b

aþ b
; a > b; c 2 ½0; 1Þ:

Assume that f ¼ .ei#. Note that the function

y1 þ iy2 ¼ }ðfÞ ¼ l f

�
þ c

f

�
ð171Þ

transforms the exterior of the unit circle in the complex plane onto the domain R2 n x.
The aim of the present section is to recall the formulae for the components of the fields UðrcÞ being

solutions to the problems bPP x
ðrcÞ of Section 2.4.

Let us start with recalling the solution to the problem of a sheet with the elliptical hole (170) subjected to

remote stresses of intensity q acting in the direction a with respect to the axis y1. The complex potentials
read, 2 (see Muskhelishvili, 1975, Section 82a)

uðfÞ ¼ 1
4
ql f



þ 1

f
ð2e2ia � cÞ

�
; ð172Þ

wðfÞ ¼ � 1
2
ql e�2iaf



þ 1

cf
e2ia � ð1þ c2Þ

c
f

f2 � c
ðe2ia � cÞ

�
: ð173Þ

2 Potential wðfÞ has nothing to do with the fields wðabÞ
c .
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The displacements (u1; u2) measured along (y1; y2) are given by

2lðu1 þ iu2Þ ¼ ,uðfÞ � }ðfÞu0ðfÞ
}0ðfÞ

� wðfÞ ð174Þ

with , ¼ 1þ 2l=k. The hoop stresses rss are expressed by

rssjox ¼ 4ReðF ðfÞÞjf¼ei# ; F ðfÞ ¼ u0ðfÞ
}0ðfÞ : ð175Þ

The fields UðrcÞ can now be expressed by the solution (174) as follows:

Uð11Þ ¼ ðu1; u2Þjq¼1; a¼0;

Uð22Þ ¼ ðu1; u2Þjq¼1; a¼p=2;

Uð12Þ ¼ Uð21Þ ¼ ðu1; u2Þjq¼1=2; a¼p=4 þ ðu1; u2Þjq¼�1=2; a¼�p=4:

ð176Þ

The components of the fields UðrcÞ, measured along ox, are given by the formulae (A.1) (see Appendix A).
The associated hoop stresses read as follows:

rssðUð11ÞÞ
��
ox

¼ ½ð1þ 2c� c2Þ � 2 cos 2#�f ð#Þ;
rssðUð12ÞÞ

��
ox

¼ �2 sin 2#f ð#Þ;
rssðUð22ÞÞ

��
ox

¼ ½ð1� 2c� c2Þ þ 2 cos 2#�f ð#Þ
ð177Þ

with

f ð#Þ ¼ ð1þ c2 � 2c cos 2#Þ�1: ð178Þ

6.2. Components of tensor M

By (60) we have

A1111 ¼ k þ l; A1122 ¼ k � l; A2222 ¼ k þ l; A1212 ¼ l:

Thus the relations inverse to (118) are expressed as follows:

wð11Þ ¼ ðk þ lÞUð11Þ þ ðk � lÞUð22Þ;

wð12Þ ¼ 2lUð12Þ;

wð22Þ ¼ ðk � lÞUð11Þ þ ðk þ lÞUð22Þ:

ð179Þ

The expanded form of (64) read

M1111 ¼ �ðk þ lÞ
Z
ox

wð11Þ
1 m1 ds� ðk � lÞ

Z
ox

wð11Þ
2 m2 ds;

M1122 ¼ �ðk þ lÞ
Z
ox

wð22Þ
1 m1 ds� ðk � lÞ

Z
ox

wð22Þ
2 m2 ds;

M2222 ¼ �ðk þ lÞ
Z
ox

wð22Þ
2 m2 ds� ðk � lÞ

Z
ox

wð22Þ
1 m1 ds;

M1212 ¼ �l
Z
ox

wð12Þ
1 m2



þ wð12Þ

2 m1
�
ds

ð180Þ

and the remaining components are determined by symmetry properties (63).
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Let us prove the expressions

m1 ds ¼ lð1� cÞ cos#d#; m2 ds ¼ lð1þ cÞ sin#d#: ð181Þ
We note that m1 ¼ cos a and m2 ¼ sin a. Moreover (see Muskhelishvili, 1975, Section 49)

e�ia ¼ 1

j}0ðfÞj f}
0ðfÞ ð182Þ

and ds ¼ j}0ðfÞjd# along the contour . ¼ 1. Thus

m1 ds ¼ Re½ei#}0ðfÞ�
��
f¼ei# d#;

m2 ds ¼ Re½ � i ei#}0ðfÞ�
��
f¼ei# d#:

ð183Þ

Taking into account the form of } (see (171)) we arrive at (181).
Substitution of (A.1) into (179) and further into (180), and taking into account (181) leads to some

integrals over #. By using the results of integration gathered in (A.3) one finds the following closed for-
mulae for the non-zero components ðMabklÞ

M1111 ¼ � pl2ðk þ lÞ
kl

½ð1þ c2Þk2 � 4ckl þ 2l2�;

M1122 ¼ � pl2ðk þ lÞ
kl

½ð1þ c2Þk2 � 2l2�;

M2222 ¼ � pl2ðk þ lÞ
kl

½ð1þ c2Þk2 þ 4ckl þ 2l2�;

M1212 ¼ �2pl2 ðk þ lÞl
k

:

ð184Þ

Let us compute

M1111M2222 � ðM1122Þ2 ¼ 8p2l4ð1� c2Þðk þ lÞ2

since c 2 ½0; 1Þ we conclude that the quadratic form qabMabklqkl, q 2 M2
s , is negative definite. The results

(184) agree with those derived in Movchan and Movchan (1995, Section 5.1.3) directly from the very

definition (57).

Remark. In the case of an elliptical hole the complex potentials assume closed form expressions (172) and

(173). In general, for a hole of arbitrary shape these potentials are expanded in series. Recently Argatov
(1998, Section 2) showed how to express the components of tensor M in terms of the coefficients of these

series. Alternatively, the components of M can be expressed in terms of the coefficients of the conformal

mapping, see Argatov (1998, Section 3).

6.3. Components of tensor bHH
To find the components of the tensor bHH the formula (169) will be used. Let us begin with proving that

y 
 mds ¼ l2ð1� c2Þd#: ð185Þ

Indeed, by the formula

y 
 m ¼ Re½ðy1 þ iy2Þe�ia�; ð186Þ
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where y1 þ iy2 ¼ }ðfÞ, with using (182) and by taking into account that ds ¼ j}0ðfÞjd# for . ¼ 1, one finds

y 
 mds ¼ Re f}0ðfÞ}ðfÞ
h i���

f¼ei#
d#: ð187Þ

For }ðfÞ of the form (171) we arrive at (185).

In the case of elliptical domain x the formula (169) assumes the form

bHHrcx. ¼
ð1� c2Þl2

2eEE
Z 2p

0

rssðUðrcÞÞrssðUðx.ÞÞd# ð188Þ

with eEE defined by (143). By substitution of (177) into (188) and using the integral formulae (A.4) (see

Appendix A) one finds

bHH1111 ¼
pl2eEE ð1� cÞð3� cÞ;

bHH2222 ¼
pl2eEE ð1þ cÞð3þ cÞ;

bHH1122 ¼ � pl2eEE ð1� c2Þ;

bHH2211 ¼ bHH1122;

bHH1212 ¼
2pl2eEE ;

bHH1221 ¼ bHH2112 ¼ bHH2121 ¼ bHH1212

ð189Þ

and other components vanish.

6.4. Components of tensors G and H

The formula bHH ¼ �CGC (see Section 5.2) implies G ¼ �A bHHA. Due to isotropy of tensor A this formula
reduces to

Gklfg ¼ �ðk � lÞ2 bHH r
rx

xdkldfg � 4l2 bHH lkfg � 2lðk � lÞðdfg bHH lk
x

x þ dkl bHH r
r
fgÞ: ð190Þ

Substitution of (189) results in

Gabkl ¼ Mabkl; ð191Þ
where ðMabklÞ are given by (184). Consequently

Habkl ¼ bHHabkl; ð192Þ
where H ¼ �CMC (see (116)). Thus we have confirmed that in the case of an elliptical opening we have

G ¼ M and H ¼ bHH : ð193Þ
Note yet that G1212 and H1212 are independent of the ratio a=b.

6.5. Case of a circular hole: Unification of all approaches

Let us specify the previous results for the case of a circular opening of radius a. Here c ¼ 0. Tensors
G ¼ M and H ¼ bHH assume the isotropic form

G ¼ pa2ð2nK1 þ 2gK2Þ; ð194Þ
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H ¼ 2pa
2eEE ðK1 þ 2K2Þ ð195Þ

with

n ¼ �ðk þ lÞk
l

; g ¼ �2 ðk þ lÞl
k

ð196Þ

and eEE is given by (143). The formulae (144) and (195) coincide. We conclude that in the case of a circular
opening all examined methods of assessing the change of energy result in the same formula (115) with

tensor H given by (195). The energy of a body weakened by a circular opening of radius ea reads

EðXeÞ ¼ EðXÞ þ pðeaÞ2

2eEE ½ðtrr0Þ2 þ 4ks0k2� þ oðe2Þ; ð197Þ

where s0 ¼ r0 � ð1=2Þtrr01 represents the deviator of r0. Alternatively

EðXeÞ ¼ EðXÞ þ pðeaÞ2

2eEE ½ðr0I þ r0IIÞ
2 þ 2ðr0I � r0IIÞ

2� þ oðe2Þ; ð198Þ

where r0I , r
0
II are principal stresses.

7. The cavity problem in three dimensions

7.1. The Eshelby method

The formulae of Section 3 have their counterparts in the 3D problem. Then the opening x is called

cavity, its surface is denoted by ox and its volume (by jxj). In the case of x being an ellipsoid the tensorH
is given by (134), where S is Eshelby�s tensor (see Mura, 1982).
Assume that the body is homogeneous and isotropic, with the elastic moduli tensor represented by

A ¼ 3KK1 þ 2lK2: ð199Þ
Here K1, K2 are projection operators (see (4)). The bulk (K) and shear (l) moduli are linked with Young�s
modulus E and Poisson�s ratio m by

3K ¼ E
1� 2m ; 2l ¼ E

1þ m
: ð200Þ

Thus, tensor C ¼ A�1 is represented by

C ¼ 1� 2m
E

K1 þ
1þ m
E

K2 ð201Þ

see (6). Let us confine our attention to the case of a spherical cavity of radius a. The Eshelby tensor has the
following isotropic representation

S ¼ 1

3ð1þ mÞ ð1



þ mÞK1 þ
2

5
ð4� 5mÞK2

�
: ð202Þ

Let us compute

I� S ¼ 2
3

1� 2m
1� m

K1 þ
7� 5m
15ð1� mÞK2 ð203Þ
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and by using the properties (5) one finds

AðI� SÞ ¼ 2K 1� 2m
1� m

K1 þ 2l
7� 5m
15ð1� mÞK2 ð204Þ

which enables one to find tensor H (see (134))

H ¼ p
1� m

2ð1� 2mÞK K1



þ 15ð1� mÞ
2lð7� 5mÞK2

�
; ð205Þ

where p ¼ ð4=3Þpa3=jXj. By (131) one computes the tensor H

H ¼ 2ð1� mÞ
E

pa3 K1



þ 10ð1þ mÞ

7� 5m K2

�
ð206Þ

which determines the change of energy in the form

1

2
r
� ijHijklr

� kl ¼ 1� m
7� 5m

pa3

E
½�ð1þ 5mÞðtrr� Þ2 þ 10ð1þ mÞkr�k2� ð207Þ

(cf. Kachanov et al., 1994, Eq. (5.16)).

The tensors S and H assume peculiar forms in the case of m ¼ 1=5. Then S ¼ ð1=2ÞI and

H jm¼1=5 ¼
8

5

pa3

E
ðK1 þ 2K2Þ: ð208Þ

The form above is similar to that of the 2D case (cf. (195)).

7.2. The compound asymptotics method

The compound asymptotics method recalled in Section 2 in the 2D context, generalizes to the 3D setting

(cf. Mazja et al., 1991). Although the Somigliana solutions assume different forms, the representation (57)

holds with only the error term corrected; it reads now 0ðkyk�3Þ, y ¼ ðy1; y2; y3Þ.
The exterior boundary value problems ePP ðklÞ

x have the following 3D counterparts

ePP ðmnÞ
x

����������
find wðmnÞ given in R3nx such that

Aijkl o
oyj

�yklðwðmnÞÞ ¼ 0 in R3nx; ð209Þ

Aijkl�yklðwðmnÞÞmj ¼ 0 on ox; ð210Þ
wðmnÞ ! EðmnÞ if kyk ! 1: ð211Þ

Here kyk2 ¼ ðy1Þ2 þ ðy2Þ2 þ ðy3Þ2 and

EðmnÞðyÞ ¼ 1
2
ðymen þ ynemÞ: ð212Þ

Tensor M is defined by the formula

Mmnpq ¼ �Aijmn

Z
ox

wðpqÞ
ði mjÞ dS ð213Þ

similar to (64). The components of tensor H read (cf. (122))

Hmnpq ¼
Z
ox

UðpqÞðmmnÞ dS; ð214Þ
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where UðpqÞðyÞ ¼ Cpqmnw
ðmnÞðyÞ are solutions to the problems bPP x

ðpqÞ analogous to the problems
bPP x
ðrcÞ. The

tensors M and H are interrelated by H ¼ �CMC .
By analogy with the representation (48) we write

wðmnÞ ¼ vðmnÞ þ EðmnÞ; ð215Þ

where the functions vðmnÞ are solutions to the problems

P ðmnÞ
x

����������
find vðmnÞ defined in R3nx such that

Aijkl o
oyj

�yklðvðmnÞÞ ¼ 0 in R3nx; ð216Þ
Aijkl�yklðvðmnÞÞmj ¼ �Aijmnmj on ox; ð217Þ
vðmnÞ ! 0 if kyk ! 1: ð218Þ

The definition (213) can be put in the form

Mmnpq ¼ �ðAmnpqjxj þMmnpqÞ ð219Þ

with

Mmnpq ¼ Amnij

Z
ox

vðpqÞ
ði mjÞ dS: ð220Þ

The appearance of a cavity xe brings about an increase of elastic energy according to the formulae

EðXeÞ ¼ EðXÞ � 1
2

e3�0ijM
ijkl�0kl þ oðe3Þ; ð221Þ

EðXeÞ ¼ EðXÞ þ 1
2

e3r
� ijHijklr

� kl þ oðe3Þ ð222Þ

analogous to those known from the 2D case (cf. (97) and (115)).

In the case of a spherical cavity of radius a the tensor H , which appeared in (222), assumes the form
(206). This identification requires an additional proof which will be omitted here (cf. Sokołowski and
_ZZochowski, 1999a,b).

7.3. Sensitivity of energy functional due to homothetic changes of cavities

Let us specify the result (158) to the 3D case ðn ¼ 3Þ. The topological derivative of J equals

Tð0Þ ¼ 1

2jxj �
0
ijG

ijkl�0kl; ð223Þ

where

Gijkl ¼ � 1
3
Amnpq

Z
ox

�ymnðw
ðijÞÞ�ypqðw

ðklÞÞy 
 mdS: ð224Þ

The relation JðXeÞ ¼ �EðXeÞ implies the following expansion for the elastic energy

EðXeÞ ¼ EðXÞ � 1
2

e3�0ijG
ijkl�0kl þ oðe3Þ ð225Þ
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or

EðXeÞ ¼ EðXÞ þ 1
2

e3r
� ij bHHijklr

� kl þ oðe3Þ; ð226Þ

where bHH ¼ �CGC and

bHHijmn ¼
1

3
Cpqrs

Z
ox

rpq
y ðUðijÞÞrrs

y ðUðmnÞÞy 
 mdS: ð227Þ

Here UðmnÞ ¼ Cmnklw
ðklÞ represent displacement fields caused by remote unit stress states, cf. problems bPP x

ðrcÞ
of Section 2.4, Eqs. (119)–(121). Tensor G given by (224) is equal to tensorM defined by (219) (see Nazarov

and Sokołowski, 2003). The proof is similar to that for the 2D case, as outlined in Section 5.2; the contour
integral becomes a surface integral. Consequently, the tensors H and bHH coincide.

In the case of isotropy and of x having a spherical shape the tensor ĤH ¼ H assumes the form (206). The

same result has been recently confirmed in Garreau et al. (2001).

8. Effective properties of solids with cavities

The problem of assessing effective moduli of porous media has been extensively developed in the lite-
rature. Despite these ample sources one can notice no attempts to interrelate the Eshelby-like results (see

Nemat-Nasser and Hori, 1993), the asymptotic results of Mazja et al. (1991) and the homogenization re-

sults for porous media (see Jikov et al., 1994, Lewi�nnski and Telega, 2000, Section 3.12). The aim of this

section is to show such relationships.

8.1. The homogenization approach

Consider a homogeneous elastic body of moduli ðAmnpqÞ weakened by periodically distributed cavities xe.
The periodicity cell is a parallelepiped Ye ¼ eY , Y ¼ ½0; l1� � ½0; l2� � ½0; l3� and e > 0 is a small parameter.
Each periodicity cell is weakened by the cavity xe. Thus the material cells are Y n xe. The rescaled peri-

odicity cell Y n x is parameterized by the Cartesian coordinates y1, y2, y3. Let m be a unit vector outward

normal to ox and let n be a unit vector outward normal to oY .
According to the homogenization approach the effective properties of a porous body are determined by

solutions to the following basic cell problems:

P ðijÞ
loc

find Y nx—periodic vector fields TðijÞ such that

Amnpq o
oyn

�ypqðTðijÞÞ ¼ 0 in Y nx; ð228Þ

Amnpq�ypqðTðijÞÞmn ¼ �Amnijmn on ox; ð229Þ
Amspq�ypqðTðijÞÞns assume opposite values at opposite sides of Y nx: ð230Þ

�����������
The effective or homogenized moduli are expressed by

Aklmn
H ¼ 1

jY j

Z
Y nx

Aklmn
h

þ Aklpq�ypqðTðmnÞÞ
i
dy: ð231Þ

The conditions (230) make it possible to rearrange the above formula as follows:

Aklmn
H ¼ jY n xj

jY j Aklmn � 1

jY jA
klpq

Z
ox

T ðmnÞ
p mq dS: ð232Þ
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The negative sign above follows from the vector m being directed outward normal to ox and hence inward
the domain Y n x. For future references we rewrite (232) in the form

Aklmn
H ¼ Aklmn � 1

jY j jxjAklmn

�
þ Aklpq

Z
ox

T ðmnÞ
p mq dS

�
: ð233Þ

8.2. Dilute distribution of cavities: Homogenization approach

Let x be located in the centre of Y . Assume, moreover, that dimensions of x are much smaller than the
dimensions l1, l2, l3, of Y . In such a case the fields T

ðijÞ decay from the boundary ox and almost vanish on
oY . Consequently, the fields TðijÞ cease to depend on Y n x; they depend rather on x, exclusively. Thus one
can assume that TðijÞ are sought in the domain R3 n x and the periodicity conditions (230) are replaced by
radiation conditions:

TðijÞðyÞ ! 0 if kyk ! 1: ð234Þ
Now we note that under the assumption of x being small the fields TðijÞ can be identified with vðijÞ, the

solutions of P ðijÞ
x (see Section 7.2). Thus the formula (233) assumes the form

Aklmn
H ¼ Aklmn � 1

jY j ðjxjAklmn þMklmnÞ; ð235Þ

where M has been defined by (220). Using notation (219) one can write

AH ¼ Aþ 1

jY jM : ð236Þ

Let us define

Jpq
ij ¼ 1

2jY j

Z
ox

wðpqÞ
i mj



þ wðpqÞ

j mi

�
dS; ð237Þ

where wðpqÞ are solutions of ðePP ðpqÞ
x Þ (see Section 7.2). We note that (236) can be put in the form

AH ¼ A� AJ ð238Þ

well known from the book by Nemat-Nasser and Hori (1993, Eq. (4.5.5a)). This links the homogenization
approach with Eshelby-like approach in which the overall microstrain is prescribed.

Let us apply the formula (236) to determine effective elastic moduli of a body weakened by a dilute

distribution of spherical cavities. Since H ¼ �CMC we determine tensorM byM ¼ �AHA andH is given

by (206). Hence M can be written in the form

M ¼ �ð3aKK1 þ 2lbK2Þjxj; ð239Þ

where

a ¼ 3
2

1� m
1� 2m ; b ¼ 15ð1� mÞ

7� 5m : ð240Þ

Due to random distribution of cavities the tensor AH is predicted in the isotropic form

AH ¼ 3KHK1 þ 2lHK2: ð241Þ
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Thus the formulae (236), (239) and (241) imply

KH ¼ ð1� apÞK; lH ¼ ð1� bpÞl; ð242Þ
where p ¼ jxj=jY j represents porosity density. The formulae above coincide with those derived in Nemat-
Nasser and Hori (1993, Eqs. (5.2.5b) and (8.1.9a,b)) by the method of prescribing the microstrain. The

same formulae were found by Eshelby (1957, p. 390) by linearizing the following formulae

K� ¼ ð1þ apÞ�1K; l� ¼ ð1þ bpÞ�1l ð243Þ
with respect to p (cf. also Hlava	ccek, 1986).
The formulae (242) are equivalent to the following expressions for the effective Young modulus EH and

Poisson ratio mH

EH

E
¼

1� 15ð1� mÞ
7� 5m p


 �
1� 3

2

1� m
1� 2m p


 �
1� 3ð1� mÞð5m2 � 6m þ 4Þ

ð7� 5mÞð1� 2mÞ p
; ð244Þ

mH ¼ m � 15ð1� m2Þðm � 1=5Þ
2ð7� 5mÞ

p

1� 3ð1� mÞð5m2 � 6m þ 4Þ
ð1� 2mÞð7� 5mÞ p

: ð245Þ

In the case of m ¼ 1=5 we have a ¼ b ¼ 2 and

EH

E
¼ 1� 2p; mH ¼ 1=5: ð246Þ

Linearization of (244) and (245) with respect to p gives

EH

E
¼ 1� 3

2

ð�5m2 � 4m þ 9Þ
ð7� 5mÞ p þ 0ðp2Þ;

mH ¼ m � 3
2

ð1� m2Þð5m � 1Þ
7� 5m p þ 0ðp2Þ:

ð247Þ

8.3. Eshelby-like approach to the dilute distribution of cavities

Let us apply the formula (133) to the basic cell Y n x. The elastic energy accumulated in the basic cell is
represented by

EðY n xÞ ¼ EðY Þ þ 1
2
pjY jr� ij eHHijklr

� kl; ð248Þ

where

EðY Þ ¼ 1
2
jY jr� ijCijklr

� kl ð249Þ

and p ¼ jxj=jY j. By (205) and (131) we have

fHH ¼ a
3K

K1 þ
b
2l

K2 ð250Þ
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with a, b given by (240). Thus r
� ij are treated here as remote stresses. The energy EðY n xÞ is approximated

by ð1=2ÞjY jr� ijC�ijklr
� kl with C� treated as isotropic

C� ¼
1

3K�
K1 þ

1

2l�
K2: ð251Þ

Since the equality (248) holds for all ðr� ijÞ we obtain C� ¼ C þ pfHH , hence
1

K�
¼ 1

K
ð1þ apÞ; 1

l�
¼ 1

l
ð1þ bpÞ ð252Þ

which is equivalent to Eshelby�s formulae (243). The derivation of (252) can be found in Nemat-Nasser and
Hori (1993), Jasiuk et al. (1994) and Kachanov et al. (1994). The effective Young modulus and Poisson ratio

are expressed by

E� ¼ E 1þ 3ð1� mÞð5m þ 9Þ
2ð7� 5mÞ p


 ��1
;

m� ¼
1

5
þ ðm � 1=5Þ

1þ 6ð1� mÞ
7� 5m p

1þ 3ð1� mÞð5m þ 9Þ
2ð7� 5mÞ p

:

ð253Þ

Note that the above formula for m� coincides with that reported in Kachanov et al. (1994) upon correction
of a misprint in the numerator.
In the case of m ¼ 1=5 we have

E�

E
¼ ð1þ 2pÞ�1; m� ¼ 1=5;

K�

E
¼ ð1þ 2pÞ�1; l�

l
¼ ð1þ 2pÞ�1:

ð254Þ

Linearization of (253) with respect to p gives the previous results (247).
Let us compare the effective moduli found in Sections 8.2 and 8.3. We note that

K� � KH > 0; l� � lH > 0; E� � EH > 0 ð255Þ

and

E� � EH ¼ 0ðp2Þ; m� � mH ¼ 0ðp2Þ;
K� � KH ¼ 0ðp2Þ; l� � lH ¼ 0ðp2Þ:

ð256Þ

The moduli KH and lH are linearization of K� and l�, respectively. Moreover,

m� > mH if m 2 ð0; 1=5Þ;
m� < mH if m > 1=5:

ð257Þ

Remark. Effective moduli for the 2D problem
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Let us find k�, l� as well aseEE� ¼
4k�l�
k� þ l�

; m� ¼
k� � l�
k� þ l�

ð258Þ

(cf. (143)). We have here

C ¼ 1

2k
K1 þ

1

2l
K2; C� ¼

1

2k�
K1 þ

1

2l�
K2; eHH ¼ 2eEE ðK1 þ 2K2Þ: ð259Þ

Here K1, K2 are defined by (7). The equality: C� ¼ C þ pfHH results in

1

k�
¼ 1

k
þ 4peEE ;

1

l�
¼ 1

l
þ 8peEE ;

eEE� ¼
eEE

1þ 3p ; m� ¼
m þ p
1þ 3p

ð260Þ

(see Nemat-Nasser and Hori, 1993, Section 5.1; Jasiuk et al., 1994, Eq. (38)). Linearization of (256) gives

Eqs. (40) and (41) in Jasiuk et al. (1994), where the negative sign at a should be replaced by (þ).

8.4. On identification of cavities by boundary measurements

The approximation of shape functionals

JðXeÞ ¼ JðXÞ þMnðxeÞTðxÞ þ oðMnðxeÞÞ
can be used in shape optimization as well as for the numerical solution of some inverse problems. In the

above formulaMnðxeÞ measures the size of xe 
 Rn, n ¼ 2, 3, andTðxÞ denotes the topological derivative
of the shape functional JðXÞ evaluated at x 2 X,

TðxÞ ¼ lim
e!0þ

JðXeÞ �JðXÞ
MnðxeÞ

:

If the Neumann homogeneous boundary conditions are prescribed on the cavity, thenMnðxeÞ ¼ ðdiamxeÞn
can be selected in the case of integral functionals defined in X. The case of boundary integrals, better suited
for the inverse problems with boundary measurements is treated in Nazarov and Sokołowski (2003). The

information given by the approximation of shape functional is used in Jackowska-Strumiłło et al. (1999) to

perform the learning process of an artificial neural network. The results of computations for 2D examples

in the case of a scalar elliptic equation show, that the method allows to determine an approximation of the
global solution to the inverse problem with circular opening, sufficiently closed to the exact solution. It

means that we can identify the localization and the size of the circular opening that is determined by three

numbers. The proposed method can be extended to the problems with an opening of general shape and to

the identification problems of small inclusions. However, the mathematical theory of the proposed ap-

proach still requires further research. In particular, the proof of global convergence of the method is an

open problem.

9. Concluding remarks and open problems

Let us draw our attention to the following points

ii(i) the Somigliana solutions determine the tensor M of Polya and Szeg€oo (see (57));
i(ii) tensor M conditions the increment of energy caused by the appearance of a small hole (see (97)) or

cavity (see (221));
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ii(iii) tensor H is linked with tensorM by (116). Its components are determined by solutions to the classical

stress-concentration problems (see (119)–(123)). The tensor H is linked with the Eshelby tensor S by
(133). For a circular hole tensor H assumes an isotropic form (see (143)) and for a spherical cavity, its

isotropic representation is given by (205);
ii(iv) the sensitivity approach leads to the tensor bHH given by (168) and (217) for the 2D and 3D cases, res-

pectively. Its components coincide with the components of tensor H ;
iii(v) in the 2D setting a plane opening can be conformally mapped onto a unit circle. The tensor H is fixed

by two first terms of this mapping. These two terms determine an effective elliptical hole. On the other

hand, the formula for tensor bHH involves all terms of the conformal mapping. Nevertheless the equa-

lity bHH ¼ H shows that further terms of the conformal mapping do not contribute to cHH ;
ii(vi) the formula for bHH suggests that this tensor is positive definite for star-shaped domains x only. The

equality bHH ¼ H proves that in fact bHH is unconditionally positive definite;
i(vii) the classical, or strain-controlled homogenization formulae lead, in a dilute approximation, to the

Eshelby-like formulae reported in Nemat-Nasser and Hori (1993). Upon such approximation the

homogenized tensor becomes explicitly dependent on the Polya–Szeg€oo tensor M . For the case of
spherical cavities one obtains the effective bulk and shear moduli as decaying functions, linear with

respect to the porosity density (see (242)). Both the decaying functions coincide for m ¼ 1=5;
(viii) the stress-controlled Eshelby-like approach, as exploited in Nemat-Nasser and Hori (1993), Jasiuk

et al. (1994) and Kachanov et al. (1994), leads, within the dilute approximation, to the decaying

functions (252) for the effective bulk and shear moduli. Both these functions coincide for m ¼ 1=5.
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Appendix A

The displacement fields (176) are expressed as follows. Let F a
bc ¼ ð2l=lÞUa

ðbcÞ

���
ox
. We have

F 111 ¼ a1 cos#þ f ð#Þ½a2 cos#þ a3 cos# cos 2#þ a4 sin# sin 2#�;

F 211 ¼ b1 sin#þ f ð#Þ½b2 sin#þ b3 sin# cos 2#þ b4 cos# sin 2#�;

F 122 ¼ c1 cos#þ f ð#Þ½c2 cos#þ c3 cos# cos 2#þ c4 sin# sin 2#�;

F 222 ¼ d1 sin#þ f ð#Þ½d2 sin#þ d3 sin# cos 2#þ d4 cos# sin 2#�;

F 112 ¼ 1

�
þ l

k
þ 1

2c

�
sin#� 1

2c
f ð#Þ½�c sin 3#þ ð1þ cþ c2Þ sin#�;

F 212 ¼ 1

�
þ l

k
� 1

2c

�
cos#þ 1

2c
f ð#Þ½�c cos 3#þ ð1� cþ c2Þ cos#�;

ðA:1Þ
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where f ð#Þ is given by (178) and the coefficients ai, bi, ci, di read

a1 ¼
,
4
ð3� cÞ þ 1

2

1þ c
c

; a2 ¼ � 1þ c
4

ð1þ 2c� c2Þ � 1

2c
ð1þ c2Þð1� cÞ2;

a3 ¼
1

2
ð1þ cÞ; a4 ¼ � 1

2
ð1� cÞ2;

b1 ¼
,
4
ðc� 1Þ þ 1

2

1� c
c

; b2 ¼ � 1� c
4

ð1þ 2c� c2Þ � 1

2c
ð1þ c2Þð1� c2Þ;

b3 ¼
1

2
ð1� cÞ; b4 ¼

1

2
ð1� c2Þ;

c1 ¼ � ,
4
ðcþ 1Þ � 1

2

1þ c
c

; c2 ¼ � 1
4
ð1þ cÞð1� 2c� c2Þ þ 1

2c
ð1þ c2Þð1� c2Þ;

c3 ¼ � 1
2
ð1þ cÞ; c4 ¼

1

2
ð1� c2Þ;

d1 ¼
,
4
ð3þ cÞ � 1

2

1� c
c

; d2 ¼ � 1
4
ð1� cÞð1� 2c� c2Þ þ 1

2c
ð1þ c2Þð1þ cÞ2;

d3 ¼ � 1
2
ð1� cÞ; d4 ¼ � 1

2
ð1þ cÞ2:

ðA:2Þ

The definite integrals involved in Eq. (180) are expressed byZ 2p

0

cos2 #f ð#Þd# ¼ p
1� c

;Z 2p

0

sin2 #f ð#Þd# ¼ p
1þ c

;Z 2p

0

cos2 # cos 2#f ð#Þd# ¼ p
2

1þ c
1� c

;Z 2p

0

sin2 # cos 2#f ð#Þd# ¼ � p
2

1� c
1þ c

;Z 2p

0

sin2 2#f ð#Þd# ¼ p

ðA:3Þ

if c 2 ½0; 1Þ. The definite integrals necessary to determine the components (189) have the form

Z 2p

0

sin2 2#f 2ð#Þd# ¼ p
1� c2

;Z 2p

0

ð1þ 2c� c2 � 2 cos 2#Þ2f 2ð#Þd# ¼ 2pð3� cÞ
1þ c

;Z 2p

0

ð1� 2c� c2 þ 2 cos 2#Þð1þ 2c� c2 � 2 cos 2#Þf 2ð#Þd# ¼ �2p;Z 2p

0

ð1� 2c� c2 þ 2 cos 2#Þ2f 2ð#Þd# ¼ 2pð3þ cÞ
1� c

:

ðA:4Þ
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