IITEIIITIOIAL HIUIIIL OF

SOLIDS a
STHIIGTIIIIES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 40 (2003) 1765-1803

Energy change due to the appearance
of cavities in elastic solids

Tomasz Lewiriski **, Jan Sokotowski ®

& Institute of Structural Mechanics, Faculty of Civil Engineering, Warsaw University of Technology,
Al Armii Ludowej 16, 00-637 Warsaw, Poland
Y Institute Elie Cartan, University of Nancy 1, BP 239, 54-506 Vandoeuvre les Nancy, France

Received 8 May 2001; received in revised form 25 October 2002

Abstract

The paper presents an overview of the problem of assessing an increment of strain energy due to the appearance of
small cavities in elastic solids. The following approaches are discussed: the compound asymptotic method by Mazja
et al., the Eshelby-like method used in the classical works on the mechanics of composites, the homogenization method,
and the topological derivative method proposed by Sokotowski and Zochowski. The increment of energy is expressed
by a quadratic form with respect to strains referring to the virgin solid. All the methods lead to the same formula for the
increment of energy. It is expressed by a quadratic form with respect to strains referring to the virgin solid. This
quadratic form turns out to be unconditionally positive definite. Explicit formulae are derived for an elliptical hole and
for a spherical cavity. The results derived determine the characteristic function of the bubble method of the optimal
shape design of elastic 2D and 3D structures.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problem of assessing the change in energy stored in an elastic body weakened by a small cavity is of
fundamental importance in the mechanics of porous media. Although its averaged solution can be found by
the energy method of Eshelby (1957), originally developed for the ellipsoidal inclusion case, it traces back to
older results of Mackenzie (1950), concerning inclusions and cavities of spherical shapes. Knowing a
formula for change of energy due to the appearance of a cavity or an inclusion makes it possible to assess
effective moduli of composites. The simplest solutions concern the case of non-interactive inhomogeneities.
These solutions based on Eshelby’s results are well known to the community dealing with the mechanics of
composites (cf. Christensen, 1979; Mura, 1982; Nemat-Nasser and Hori, 1993). It seems, however, that the
asymptotic justification of Eshelby’s methods, developed in Mazja et al. (1991) and Maz’ya and Nazarov
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(1987), is less known or even ignored. A deeper insight into the small opening problem reveals a link be-
tween Eshelby’s formulae and older solutions of Polya and Szego, see Schiffer and Szego (1949). These
results interrelate the small opening problem with the problem of a concentrated loading and, consequently,
with the theory of Green’s function. On the other hand, the results of Polya and Szego opened new pers-
pectives for posing and solving some optimization questions. The works of Mazja et al. extended the Polya—
Schiffer-Szego results to the elasticity field thus providing asymptotic justifications of Eshelby’s formulae.
Also these results contribute to formulating new classes of shape optimization problems (see Nazarov and
Sokotowski, 2003).

The classical shape design problem reads: lay out a given amount of material in a given feasible domain
such that the overall compliance of the structure attains a minimum. It is known that this formulation
requires relaxation. If based upon the homogenization theory, such relaxation admits a new design material
of porous microstructure, the properties of which being determined by the homogenization formulae (cf.
Allaire and Kohn, 1993; Cherkaev, 2000; Lewinski and Telega, 2000, and the literature cited therein). In the
case of a dilute distribution of cavities within a representative volume element, the effective properties are
governed by simplified formulae found previously by Eshelby (1957) without any reference to mathematical
averaging methods. These formulae can be further linearized with respect to porosity density without any
loss in accuracy. On the other hand, the same results can be justified by the asymptotic methods of Mazja
et al. (1991). Therefore, the following four approaches complement each other: Eshelby (mechanics of
composites), Mazja et al. (asymptotic analysis of perturbation of domains), Sokotowski and Zochowski
(topological derivative of shape functionals) and the homogenization approach.

Relaxation by homogenization is not the only method to attack shape optimization problems. Important
suboptimal solutions have been found by the bubble method of Eschenauer et al. (1994) and Schumacher
(1995) cf. Eschenauer and Schumacher (1997). The idea of its numerical algorithm consists in removing
these subdomains where a characteristic function assumes values smaller than a given threshold value. It
has turned out recently that the characteristic function of the bubble method is determined by the topo-
logical derivative of shape functionals. Sokotowski and Zochowski (1999a,b) presented an algorithm for
finding the topological derivative of a large class of shape functionals, whereas the only shape functional
considered in Eschenauer et al. (1994) was the compliance. Let us recall that the topological derivative
defined in Sokotowski and Zochowski (1999a,b) represents a change of a given shape functional caused by
the appearance of a small spherical opening in a given domain. Lewinski and Sokotowski (1999, 2000)
generalized the notion of the topological derivative to the case of non-spherical openings in the context of
the Neumann boundary value problem, and for the energy functional. This generalization made use of the
compound asymptotic expansions of Mazja et al. (1991). Further generalizations to a more general class of
functionals can be found in Nazarov and Sokotowski (2003). New numerical techniques of the bubble
method have been recently developed by Garreau et al. (2001).

In the present paper the notion of a directional topological derivative is defined for appearing of non-
circular holes and non-spherical cavities in general case of linear elasticity. The functional of compliance is
considered. A proof is given that the characteristic function of the bubble method for the compliance
functional coincides with the expression for a change of the elastic energy caused by the appearance of an
arbitrary hole in the 2D setting, and by the appearance of cavity of an arbitrary shape in the 3D setting. In
this problem the results of the following methods coincide: the Eshelby like approaches (see Kachanov et al.,
1994) the compound asymptotics method and the topological derivative method.

The paper is organized as follows. In Section 2 we rederive the results of Mazja et al. (1991) concerning
the change of energy caused by the appearance of a small hole in an elastic solid. We derive the formulae for
the Polya—Szego tensor M, treated here as the rank four tensor. Our approach differs essentially from that
of Mazja et al. (1991). The formula for the energy change is then rearranged to a form applicable in the
mechanics of composites (see Kachanov, 1999). In particular, the cavity compliance tensor H is introduced
in a new manner. In Section 4 we refer to the concept of the topological derivative for circular holes and



T. Lewinski, J. Sokolowski | International Journal of Solids and Structures 40 (2003) 1765-1803 1767

prove that this method leads to the tensor H identical with that followed from the Eshelby-like approach.
Sensitivity of the energy functional with respect to the appearance of a non-circular hole is considered in
Section 5 by generalization of the topological derivative approach. With using the Muskhelishvili (1975)
solution it is shown that all available methods result in the same formula for the energy change due to the
appearance of an elliptical hole. The topological derivative determines the sensitivity of energy by a quad-
ratic form with a matrix G. It has turned out recently that G = M irrespective of the shape of a hole (see
Nazarov and Sokotowski, 2003). We note that the matrix M is unconditionally negative definite. This proof
is straightforward (see Section 2.3). On the contrary, the very definition of the matrix G suggests that it is
negative definite for star-shaped domains only (see Eq. (161)). Due to the equality G = M we realize that
this assumption is redundant. The explicit formulae for the components of G = M can be found for an
elliptical hole, as shown in Section 6. Independent computations of components of M and G are reported
for the convenience of the reader.

In Section 7 we put forward a generalization of previous results to the 3D setting. We refer to the
Eshelby-like results for a spherical cavity. Then we show the way the cavity compliance tensor H appears in
the compound asymptotics approach. According to Nazarov and Sokotowski (2003) this result is equi-
valent to the result found by the topological derivative method.

The effective moduli of composites of an isotropic matrix and anisotropic inclusions of small concen-
tration have been derived by Sanchez-Palencia (1985) in the context of a scalar elliptic problem with pe-
riodic coefficients. Similar approximate formulae for the effective moduli of porous media with periodically
distributed voids can be put forward within the linear elasticity formulation as exposed e.g. by Jikov et al.
(1994). In Section 8 we prove that in the case of dilute distribution of spherical cavities the homogenization
formulae simplify to the formulae which are linearization of the Eshelby equations with respect to the
density of porosity. Then we show that these formulae coincide with those reported in Nemat-Nasser and
Hori (1993), where they follow from the method of prescribing microstrains. On the other hand, the method
in which microstresses are prescribed can be viewed as a result of imposing the dilute approximation on the
homogenization formulae put in their dual form, involving homogenized stresses.

Applications of the dilute approximation formulae for effective moduli extend the framework of the
mechanics of composites. Since relaxation by homogenization means admitting a porous body as a design
material, the dilute approximation formulae apply in the algorithm of shape optimization, where the poro-
sity density plays the role of a new design variable.

The problems considered in the present paper should not be misled with the cavitation problem referring
to finite deformations of elastic solids, discussed in the papers by Ball (1982), Miiller and Spector (1995)
and in the papers cited therein.

The following notation will be adopted. Small Latin indices, like i, j, k, I, m, n, p, q, s, ... run over 1, 2, 3;
the small Greek indices, like o, 8, 4, u, 7, 9, 1, x, ..., except for ¢, assume the values 1, 2. The symbol ¢
represents a small positive parameter. Let u = (u;,u;) and w = (w;, wp, wp) depend on (x;,x,), (v1,)») or
(x1,x2,x3), (V1,12,)3), respectively. Then we define the operators

1 (Ou, Ouy v 1 [/ Qu,  Ouy
65‘/;(") - 2 <axﬁ + axa )7 Ea[i(u) - 2 <6yﬁ + ayy )

P LTI W
K - 2 Ox j ax[ ’ elj o 2 ayj ay, '

Since all tensors are referred to Cartesian systems the position of indices is arbitrary. The summation
convention applies to the indices at different levels. To avoid misunderstandings the sign ) appears, if
necessary.
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The space of symmetric tensors of the rank two is denoted by M?, while M! is the space of all tensors of
the rank four possessing well known symmetry properties of the Hooke’s tensor. The inner product in Mf
is defined by ““:”; thus for a, b € M? we write a : b = a*b,5 or a”’b,;. The norm is defined by ||a|| = (a: )’

For A, B € M* the product AB is defined by (4B)"* = (A“ﬁ“f"sij; ) in the 2D case and, similarly, for the
3D case.

The unit tensors 1 € M? and | € MY, referred to the 3D Euclidean space spanned over the orthonormal
basis (e;) have the following representations

1 =5i’ie[®ejv (1)
1= % (%0 + 5" e v e; @ e @ e, 2

For the 2D case the representations are similar.
The isotropic tensors @ € M? and B € M? are represented by

a=adl, B=dal®1+0l (3)
Consider the 3D case. The tensors
1
A1:§ﬂ®1], Ay =1-A (4)
are mutually orthogonal projectors having the properties
AMAL=A;, AA=MA =0, AA =A; (5)

To invert B we rearrange its representation

B = (3a+b)A; + bA,.
If 3a+b6#0, b #0, we find

B'=(3a+b)'A +b"A,. (6)
Consider the 2D case. The projectors are defined by

Alzéﬂ@)ﬂ, Ay =1—A. (7)
To invert B we write B = (2a + b)A; + bA, and if 2a + b # 0, b # 0, one finds
B = (2a+b) A +b'A,. ®

2. A hole in a plane body: evaluation of change of energy by the compound asymptotics method
2.1. Setting of the problem

Let us consider a plane open domain Q C R? parametrization by the Cartesian coordinate system (x, x,)
with the basis vectors e;, e,. Assume that its origin 0 = (0, 0) lies within Q. Let us form a family of domains
w, around 0 such that 0 € o, and

W, = {xEEw} 9)

Here x = (x;,x,), ¢ is a small parameter and w is an open domain in R%. For ¢ sufficiently small w, C Q and
the domain Q, = Q\ @, will play the role of the domain occupied by an elastic homogeneous body. The
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2

Y1

Fig. 1. The rescaled shape of the hole.

domain w, represents a hole in the body. If ¢ changes, the holes remain homothetic to the rescaled hole .
The domain o and its surrounding R? \ @ will be parametrized by the Cartesian coordinates (y1,»); its
central point 0 € w (see Fig. 1).

Let us assume that v = (v, v,) and = = (ty, 7,) are vectors: outward normal and tangent to Ow at a point
A = (y1,)) (see Fig. 1). Note that v, and z, at 4, = ()1, e)») € Ow, have the same components as v and =,
respectively.

We consider a plane (plane stress or plane strain) elasticity problem in the domain €,. The strains as-
sociated with a trial displacement field u = (u;,u,) are given by the formula

1 (0u, Oug
cup(u) = 2 <ax,; * axa> (10)

and the linear constitutive relations are written in the form
o™ (u) = AP, (u), (11)
where A4 = (4*P*) € M refers to the plane stress or plane strain. Tensor 4 is assumed to be positive definite
Ail;)"LKaﬁKZ# > c;ca,;;c“” Vk € Mf (12)
and ¢ > 0.

Assume that the external boundary 0Q of Q, is loaded by tractions of intensity p = (p*) and that they
satisfy the usual conditions of self-equilibrium

/ap~vdS:07 Vv € X, (13)
Q

where ' 2 = {v|v, = 1) + ¢elx;}; here 10, ¢ are constants and (ef) are components of the Ricci tensor; i.e.
e = ¢ =0, e = —ef = 1. The boundary dw, is unloaded. The body forces are omitted.

The stresses associated with the unknown displacement field #* satisfy the homogeneous equations of
equilibrium

! The quantity v = (v, v;) represents a displacement field, while the quantity v = (v;, v;) represents a vector outward normal to dow.
The fonts used look the same, which should not lead to misunderstandings.
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oo™ (u)
= 14
axﬁ 0 ( )
and the boundary conditions
™ (u)ng = p* on 0Q, (15)
¥ (u’)vg =0 on dw,. (16)

Here n = (ng), v = (v4) represent unit vectors outward normal to Q and w,, respectively. Due to the
condition (13) the stresses 0*/(u*) and strains ,;(u°) are defined uniquely, while #° is defined up to the plane
rigid motions.

The conditions (14)—(16) are equivalent to the variational equation

/}WmmmM=égwm (17)

valid for all sufficiently regular »; here dx = dx; dx,.
The elastic energy stored in the body with a hole equals

6(2) = [ ou)enor)dr. (18)

The aim of the present section is to find an asymptotic formula for the change of energy &(Q,) — £(Q2), where
&(Q) represents the energy stored in the body without a hole, and subjected to the same loading at 0Q:

£(Q) :% /Q ™ ()€ (v) dx. (19)

Here v is the displacement field within  satisfying:
(i) the equilibrium equation

/Q e y@®)dx = [ p-bds (20)

oQ

valid for all sufficiently regular v defined in Q.
(i1) the constitutive relation

o (v) = APe, (v). (1)

The local equations implied by (20) are

da*F (v) .
=0 Q 22
o0 e (22)
¥ (v)ng = p* on 0Q. (23)

The energy change £(Q.) — &(Q) can be found by the compound asymptotics method developed in
Mazja et al. (1991) and in Maz’ya and Nazarov (1987). This technique is recalled in the sequel.
Let us prove now that £(Q,) — &(Q) > 0. According to the Castigliano principle we have

1
() =5 min { / P Coptt = (1) € s}

&

1. , \
g(Q) = 5 min { ‘/Q Tlﬁcxﬂ)vﬂf/“urc = (T“ﬁ) (S S}



T. Lewinski, J. Sokolowski | International Journal of Solids and Structures 40 (2003) 1765-1803 1771

Here C = A7 ! and S,, S are the sets of statically determined stresses:

S, = {t = (") € [*(Q,,M?)|divt = 0 in Q,, tv; =0 on dw,, tn; =p” on 0Q},

S={r= (") e [*(2,M})|divt =0 in Q, t’n; = p* on 0Q}.

Let 6, and ¢ are minimizers of the above problems. Let us introduce the extended field 6 € S of the
following form,

- o 6(3)()6) ifoQ\wS,

o'(x)—{o if x € w,.
Note that under some minimal regularity assumptions on the boundary of @ we have & € S since a(“g vg=0
on Ow,. Therefore, we have the following inequality:

~, ~), 1 o
g(Q) < E LG ﬁCiﬂ;,ﬂa *dx 25[2 O'(lj) d/j)uO' dx éa( )

2.2. Asymptotic expansions by Maz’ya and Nazarov

To determine the change of energy &(Q.) — &(Q) for small ¢ one should apply the compound asymp-
totics method to disclose the way the solution #* depends on ¢. Following Mazja et al. (1991) we represent
the field #° in the form

uc(x):vm)(x)—&—sw(]( )—i—av (x) + Ew ();)—i—7 (24)

where v® = v is the solution for the problem posed on the domain Q (see (20) and (21)) and the next terms
introduce subsequent corrections to the boundary conditions on 0w, and 0Q. It is assumed that

05 (v () _,

1 =0,1,2,... 25
6x/; ’ ! T ’ ( )
o™ (W
0O o iy (26)
v
where y = (y1,)2) and
Ujﬁ(u) = A“ﬁ'“‘eﬁu(u)7 (27)
1 (Ou;  Ou,
Y —— Ly TR 2
eun) =3 (5252 ) 8)

for any differentiable u = (u;(y), u2(y)).

The first approximation u; ~ v" = y satisfies (14) and (15) but violates (16). The second approximation:
uj; ~ v+ ewl(x/e) satisfies (14) The condition (16) could be satisfied with an error of order 0(¢), as fol-
lows. We have

eanliy) = () + €| 400 (29)
and hence
) = O8] v+ A (3) O+ 0() (20)
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Thus we require that
AP ( Ny = —A""€) vy on do, (31)

where ), = €,(v)(0). Note that the Vector field w ) is defined in R* \ @ and satisfies (26) and (31). This field
depends llnearly on the quantities ) , hence w!) admits the representation

A2
w () = ™ ), (32)

where the functions y*) = 9 are solutions to the boundary value problems

find ) defined in R*\® such that

(P(ZH)) Axﬂy&&d;é(x(im) =0 in R2\@, (33)
@ AFPE () )vg = =4y on do, (34)
l(/{#) —0 if Hy” — 0. (35)

The variational formulation as well as the existence and uniqueness results of the exterior problems of
linear elasticity can be found in Nazarov and Plamenevsky (1994). The related results on the polarization
tensor can be found in Nazarov (2000, 2001a,b) and Argatov (1998). From these sources one can read off
the mathematical details of how to construct appropriate function spaces in the domain R? \ @ to assure the
existence of y**).

However, the proof of uniqueness is much easier and is worth reporting here.

Note first, that the functions y**) admit the following expansion at infinity

2 = c%m+mwr> (36)

where ||[y||> = (1)” + (»»)* and C“‘ are constants. Let us write down the weak formulation of P/%). Let the

[}

circle By of a radius R encompass the domain @. By multiplying (33) with 3, and integrating over By \ @ one
finds

Ao /B \_%M Nely(7)dy = A% / &, (" g, ds + 47 / B,vpds, (37)

0w

where I'y = 0Bg. The term underscored above is of order 0(||y|| ). Thus, if R — oo the integral over I'
vanishes, provided that 9, are sufficiently smooth and of bounded support. Passing to infinity: R — oo gives
the variational equation

mmékﬁmwwww®=MMAﬁmw (38)

valid for appropriately decaying trial fields »
Note that the right-hand side of (38) vanishes for » € #. Let us put first 5, = v) = constant. Then

ol
0
Wvgds =10 [ ——dy=0. 39
Aw ’ ayﬁ ( )
Let us take now v, = eay/; or U; =y, U, = —y;. The right-hand side of (38) equals
5 0
A“ﬁ"‘seg/ Vevpds = A“ﬂ"‘)e;’/ y,,ﬂvi ds. (40)
0w dw ayﬂ
Since
0’ )’/3

oy, 6y,
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we have
5 {i<@yﬂ > %ai] _
— 10 \ 0w Y ) "o o,

Integrating over w one finds

g ayr
v,d 41
2w O Z / % @y) 4
Hence we find a useful identity
/8 YoVp ds = 50ﬁ|w|7 (42)

where || represents the area of . Due to symmetry of (4%#°) with respect to the first two indices one notes
that the expression (40) vanishes. Since the right-hand side of (38) vanishes for all ¥ € %, the fields x*? are
uniquely determined.

Let us define the auxiliary vector fields

1

E(Aﬂ)(y) :E(yie;t+y;te2)a }mu € {132}7 (43)
with components
En 1

o (y) = 5 (yﬁ.éyoc + yuéia)- (44)

The strains associated with these fields form a unit tensor (2) in M?
ey (EM) = 1. (45)
Here
1 i
=5 (0,0} + 0,5)). (46)

By virtue of (45) one can rewrite the conditions (34) as follows:
AP () + E®)vg = 0. (47)
Let us introduce new fields

v ) =D ) + EP (). (48)
By (47) we see that these fields are solutions to the following problems

find ¢ defined in R*\@ such that

e I (49)
¢ A“ﬁi“eﬁu(l//('“’))vﬁ =0 on dw, (50)
Y — EYf [|y]| — oo (51)

Let us come back to the asymptotic expansion (24). Substitution of (32) gives

' (x) = v(@) + o, 1 () + V@) 4 (52)
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In the vicinity of the boundary dw, the function v(x) has the following expansion:

v(x) = »(0) + € ™ (x) + dr(x) + 0(c), (53)

where r(x) = (1/2)(—x,e; +x1e;) and ¢ represents an angle of a rigid rotation in the (x;,x,) plane. The
terms underscored in (53) belong to the set #. Hence the strains are

exp(v) = €3+ 0(e) (54)
and

ep(u’) = e‘;ﬁ + egﬂeiﬁ(x“")) - +0(e) (55)
or

) = e, 0| 06 (56)

In the further use of the formulae above a deeper insight into the behavior of the functions y** is
necessary. This will be the subject of the subsequent section.

2.3. Tensor of Polya—Szego

The solutions of the problems P*# have the following expansions around y = oo (see Mazja et al., 1991)

10 0) = M (Tio) () + 01V, (57)

where the coefficients (M***") are constant and the vector fields T 1), Ty represent the displacement fields of
an infinite body subjected to the point loads by = d(yv)e;, by = 6(y)es, respectively. The point loads are
concentrated at the origin y = 0. Thus the components (7)) form the Somigliana or Kelvin solutions. They
satisfy the Lame equations

*(Tv)
Ao "5 5y — 0) = 0. 58
3,07, (-0 (58)

The fields (7)), can be found by performing the Fourier transform of Eq. (58). It occurs that these fields
include singularities of order O(In ||y||), while the fields

Uapo = €4(T(0)), (59)

include singularities of order 0(|[y|™").
The tensor of elastic moduli of an isotropic body in the 2D problem (both: the plane strain and plane
stress) is represented by

A = 2kA; + 2uA,, (60)

where & and u are bulk and shear moduli and the operators A, A, are given by (7). The components of the
Somigliana solutions are expressed by (see Hahn, 1985, p. 274)

1 Voa
T»(y), =———| — (k+21)ds In|y| + & . 61
(Ti(»)) kT ) ( 1) vl e (61)

The components (M**) entering (57) form the Polya—Szego tensor, similar to that introduced in the
potential theory (see Schiffer and Szego, 1949; Schiffer, 1956). The notion: “Polya—Szego tensor” is used in
Mazja et al. (1991) and Movchan and Movchan (1995, Section 5.1).
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Since the fields y** are of length dimension the components (M***") are of force dimension (N). These
components depend on the shape of w and on the moduli £ and p. Thus there exists a non-dimensional
tensor M such that

M = |w|kM. (62)
Knowing the fields y**) and the Somigliana vectors T (» and imposing the following symmetry properties
M;\'é),,u — M},,umi’ Mmi/lu — Mérc),,u7 Mlcéllu — M;cé;ul (63)

one can determine the components (M***#) directly from the representation (57). Alternatively, these com-
ponents are expressed by the following integral formulae

i) = [y (64

(ll) Mmia",' — _Ah'éa","w| _ %;C(S(A’y’ (65)
where

R0 — b . eﬁﬂ(x("a))%ﬁ(x(”’))dy (66)
or

%Kéﬂ}’ _ AmﬁlCdA Xiﬂ“/)vﬂ ds. (67)

Tensor .# is analogous to the mass matrix tensor of Polya and Szego (see Schiffer and Szego, 1949).

In a different, vectorial notation, according to which the tensors M and .# are of the rank two and of
dimension 6 x 6, the formulae (64)—(67) have been derived in Mazja et al. (1991). Due to some technical
reasons, in order to emphasize new subtle arguments, it is thought appropriate to give below the complete
derivation of the formulae (64)—(67).

Proof of (i). Let us encompass the domain w by a circle By (see Section 2.2). The fields ¥'*” satisfy an
equation of the form similar to (37)

A / G (W) (9) dy = A7 / &, (W' )nyd, ds (68)
Br\w I'r
valid for sufficiently regular fields ©,. The boundary conditions (50) have been taken into account.
Let us put » = ") into (37) and » = 3*9) into (68). Thus we arrive at two identities of the same left-hand
sides. Equating the right-hand sides gives the formula

Nrc&uy _ _Aoaﬁm)' : l/jiﬂ"/)vﬁ dS, (69)
where
N Aa/m/r {eizﬂ(xhcé))wgav) _ eiﬂ(./,(ay))xgxé)} ngds. (70)

Thus the tensor N does not depend on R. The components N°” will be found by passing with R to
infinity in the formula (70). By (48) and (57) we note that

lpg:ﬂ')|rR — Esﬁ) _|_0(R71), (71)
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)|, = 15 +0R™), (72)

and substitute these expressions into (70). By disregarding the terms that do not contribute to the final
result, we obtain

W= fim 4 [ (e (B~ 7 s 73)
and substitution of the representation (57) gives

K0T anlgnfg’ (74)

Ny = A7 lim 5 (€, (U)ES = Uil | mpds. (75)
Here

(Ui) =Y Ugyots (76)
and U1, Upy)e are defined by (59). Our aim is to show that

My = Uy (77)

The key idea of the proof is to make use of the variational counterpart of the Somigliana equation (58)
/ AU poes(@)dy = 9(0) - ¢, Jr/ AP g)onpep, ds. (78)
Br Iy

Let us remind that the components of the point loads b, are b, = J,,0(y). The hyperforce

s =3 "€ (b)es (79)

o

is applied at the point 0 = (0,0); the indices A and p are viewed here as fixed. The components of s‘**) are
given by

. | 0
) — 2| 2 (5. —
or
, 1 09 00
Sg/.;t) = 3 <5M 5 + 51“6_)/‘) . (80)
u A

We note that the force s brings about the displacement field U;, given by (76) and (59). This dis-
placement field satisfies the variational equation (78) in which the force b, is now replaced with U Tt
reads

[ e, Uiy dy = 700+ [ 4006 U e, ds (81)

Bg I'r

where ¢, denotes the components of the vector test function ¢.
Let us define the mollifier

9u0) =123 ). (82)
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where /4 is a small positive number and

_ [ Cexp[=1/(1 = |x|]P)] if |lx]| <1,
) {o if x| > 1. (83)
Constant C is chosen such that

oma=1 [ ame-t (34)

Let us introduce the pseudoforces sh ) of components (sh ) given by (80) with 6(y) replaced by ¢, ().
These pseudoforces bring about the displacement fields U () of components (Uh;# ), =€, ( ) which
satisfy the variational equation

A / ezve(U()/t)) ( )dy / Q- SE:W) dy +Aaﬂla / G?Q(U(Au )nﬂq)a ds (85)
Br Bg I'r
for sufficiently regular ¢. Let us substitute ¢ = E*° to obtain
of K (Z4) af KO
ae [ et ar= [ a0l Enas (86)

Note that the stresses a;” (E™)) satisfy the homogeneous equations of equilibrium. Thus the following
variational equation holds

e / &, (E")e,y(7) dy = A7 / &, (E“)ngs, ds (87)

I'r

for sufficiently regular o,. Let us substitute v = Uf’z W to obtain
AP / &y (U, ) dy = 42 / Uty ds. (88)
Br I'g
By equating the right-hand sides of (86) and (88) one finds

Aa(ﬁrg / [E{Q(U?;‘”))Eg{xé) _ U () 1[|’:;:| ng ds = — / E(IC(5) . s;[lll) dy (89)
Iy Br

Let us pass with 4 to zero. The left-hand side of (89) tends to n’f defined by (75). Let us find the product:
E™. . To this end let us compute

w-sz”‘)—(pa(sif’”)al( 0, aqs) — & () — (D)),

7 ayl g a}%
Hence
[osma= [ eotr- [ b0 - -e,0)0 (90)
Bp Br Br
if 2\, 0. Therefore, the right-hand side of (89) tends to eﬁﬂ(E (0)y = fﬁ, which proves (77). Substitution of

(77) into (74) gives N = M, with N being defined by (69). The thesis (i) or the formula (64) is proved. [

Proof of (ii). We substitute ¥ = (°”) into the variational equation (37). We note that

/ & (1) npds — 0 (91)
Iy
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when R — 0. Indeed, €, (") = 0(R?) and ") = (R™"), ds = Rd6. Thus the above result holds. Con-
sequently, one finds

AP e (e () dy = 4P / 77 vpds (92)

RX\® )

which proves that both the derivations (66) and (67) of the tensor .# are equivalent.
Let us substitute (48) into (64) and make use of notation (67). One obtains

M;\'éoy _ _Aaﬁlcd/ Eﬁ(ay)vﬁ ds — %Kéay. (93)
oo

By using (44) and (42) one computes
, 1 ) 1 1
/ E(im)vﬁ ds = E / (yybw +y051~,)\7/; ds = 55%_/ Yvp ds + zéw/ YeVp ds
0w 0w 0w dw
1 1 o
= 3 0udloo] + 56u0gl0] = o) (94)
which confirms (65). The thesis (ii) is proved. [

The symmetry properties (63) are direct consequences of the formula (65). Let us consider a quadratic
form

(@) = qup(=M"")q,., g €M, (95)
By (65) and (66) we have
f(g) = 4ud™7 qq|0] + . . (9) 4" e, () dy (96)

with ¢ = g,57*"). Since 7/ ¢ # we know that €, (¢) # 0. The estimate (12) implies f(g) > 0if ¢ # 0. Thus
the tensor M is negative definite.
The role of the tensor M will be cleared up in the subsequent section.

2.4. Change of energy according to Mazja et al.

The compound asymptotics method makes it possible to solve the problems of perturbation of a large
class of shape functionals (see Nazarov and Sokotowski, 2003). Change of the energy functional for the
Neumann problem, brought about by drilling of a small cavity, was first determined in Maz’ya and
Nazarov (1987). The similar perturbation problem for the linear elasticity was considered in Mazja et al.
(1991). However, the final result is not reported in this book. This final result is recalled by Movchan and
Movchan (1995, Section 5.1.3), where a reference is made to an unavailable paper by Zorin et al. (1989).
This final result reads

1
8(2,) = 6(Q) - 3FMPE, + o(2), (97)

where &(Q.) and &(Q) have been defined by (18) and (19) and represent the elastic energies stored in the
body with a hole and without a hole, respectively. Moreover, egﬁ = €,3(v)(0) represent strains measured in a
body without a hole at the point where the hole starts to nucleate.

Since the derivation of the formula (97) is still unpublished in the available literature, it is thought
appropriate to present it in detail. By (17) and (18) the energy stored in the body with a hole equals

8(Q,) = % /mp -u®ds. (98)
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Substitution of (24) into (98) must be done with care. By (57) we have

1 (2) = M, (T o) (x)) + 20( ]| ). (99)
Substitution into (24), with making use of (32) gives

w'(x) = v(x) + Eax) + £0(||x| ) + o(e) (100)
with

(x) = eg’#M}"""3 U 5 (x) + v (x). (101)
Here

Uy = [e(Ty), €6(Tw)]-
The term underscored in (100) must satisfy the homogeneous boundary condition
o’ (@)n; =0 on 0Q. (102)
Moreover, by (25) we have

ia“ﬁ(v“)) =0 inQ. (103)

6x/;
Consequently, the function v satisfies (103) and the non-homogeneous boundary condition on 0Q

(v ny = —egﬂM“‘V‘;a“ﬂ(U’(},é))nﬁ on 0Q. (104)
By analogy with the variational equation (81) one finds the variational equation for Uy,

4Pre /Q e,g(U’}m)eaﬁ(tp)dX = <s(~m‘)7 o) + /m o—“ﬁ(U’{},é))nﬁ% ds, (105)
where ¢ is an appropriately regular function defined in R* and (see (90))

(s, ) = lim(s;/”’, @) = —€.4()(0). (106)
By (103) and (104) we note that »(!) admits the following representation

v<1) = MAW(SGEHZ(?,@) (x), (107)

where the functions z(,s = 25, satisfy

> .
B " G =0 & (108)
lo

7240 )np = =" (Uf 5 )ns  on 0Q (109)

and sigma ¢*#(-) are given by (11).
Substitution of (107) into (101) gives

=€ M (U5 + 2(0)- (110)

The functions z(,s satisfy the following variational equation

/QA“/;IQG‘Q(Z(W))GM((P)dx = _/ " (Ufyy) )10, ds. (1)

0Q
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On combining Eqgs. (111) and (105), and using (106) one finds

ge / (20 + Ul g))esp(@) dr = —€,5(0) (0). (112)

Q

Let us put ¢ = v in (112) and v = z(,5) + Uy, in (20). Hence

[ p o+ U as = =4, (13)
which is a consequence of Betti’s theorem. Taking into account (110) one finds

/ p-uds= —egﬂM’l’*"‘se%. (114)

00

Substitution of (100) into (98) and making use of (114) gives the desired result (97). Since M is negative
definite we note that £(Q,) > &(Q), irrespective of the shape of the hole w,.

The energy change &(R,) — &(Q) could alternatively be expressed in terms of the stress field (¢*). In-
stead of (97) one can write

8(Q,) =6(Q)+ %gzémﬁxé.mévﬂ + o(&?), (115)
where " = A€} and the tensor H is linked with the tensor M by

Hygpu = —CooupM ™™ C;y.,, (116)
or H=—-CMC. Here C = A" or

Coprpd™ = 1. (117)

Let us introduce new vector fields in R? \ @:

Do) (v) = Consth ™ (v), (118)

where ¥ are solutions of the problems f’jf") (cf. Section 2.2). The fields (118) are solutions to the fol-
lowing exterior problems

find ®,,, defined in R*\@ such that

o AP (@) =0 in R\, (119)
D el (®)vs =0 on do, (120)
(@) — 1y i [yl] — co. (121)

__ One easily notes that the formulation of the problems above is a direct consequence of the formulation
P of the definition (118) and of the properties (117) and (118).
Substitution of (64) into (116) gives

I_Ilcd",',u = / qj("m)lcvﬁ ds. (122)
o

By using symmetry properties (63), that refer also to the tensor H, one can rearrange the above expression
as follows:

1
Hspu = 3 A [(I)@.,,)Kv(; + (P(mav,c] ds. (123)
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The following representation proves useful
H = |o|H, (124)
where dimensions of H are the same as dimensions of tensor C of elastic flexibilities.

Solutions to the problems P{7 |, for various shapes of w, are reported in the known monographs on stress
concentration around holes (see e.g. Savin, 1968). Upon finding the fields @,,) one can easy compute
(ch&y;t) by (122)

Lastly, note that the energy change can be expressed in the form

1 o o
E(Q,) - £(Q) = 582|Q|0“ﬁea/3, (125)
where
o o 1 0 0
ey = 20 /aw(uav,; + ugv,)ds (126)

with uo = S'“ﬂq)(m/;).

3. The Eshelby method

The remote strain field given in a form of an mth order polynomial in x = (x;, x,) induces in an ellipsoidal
inclusion a strain field being also an mth order polynomial. This result of Kunin and Sosnina (1971)
generalizes the result of Eshelby (1957) concerning the case of m = 0. This last result, along with R. Hill’s
concept of smearing-out non-homogeneities was a basement for the energy methods of assessing overall
properties of composite materials.

Following Christensen (1979), Nemat-Nasser and Hori (1993) and Jasiuk et al. (1994, Eq. 35) we recall
the Eshelby formula for the change of energy due to the appearance of a hole in a body 2, subjected to
stresses o

1o
E(Q\ w) = E(Q) + Ea“ﬁ/ ulvpds, (127)
0w
where u = (), u) is the displacement field induced by (*/). One can write
1 o o
5@\ ) = £(2) + 37/ (128)
o 1 0 0
e = 20| /aw(u“vﬁ + g, ) ds. (129)

Let us emphasize a similarity between the formulae (128), (129) and (103), (125). The formula (128) is
effective if the relation 21/;(0'0) is known. Due to linearity a tensor # exists such that

éaﬁ = %aﬁiug;ﬂ (130)

(see Nemat-Nasser and Hori, 1993). In the paper by Kachanov et al. (1994) the tensor # is called a cavity
compliance tensor. Putting ¢ = 1 in (115) one finds

1
H=—H 131
or
A = pH, p:M (132)

el
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cf. (124); p represents the area fraction of the hole and will be called porosity. Substitution of (130)—(132)
into (128) gives

1 0 jd o
&2\ w)=6(Q) +§P|Q|0WH).;L1/;0M~ (133)

The tensors # and the Eshelby tensor S, as defined in Mura (1982, Eq. (11.15)) and Nemat-Nasser and
Hori (1993, Section 7.3.3) are interrelated by
H=p(l—8)"'4" (134)

Particular forms of this tensor for holes of different shapes are reported in Tsukrov and Kachanov
(2000), Kachanov et al. (1994), Kachanov (1999), Sevostianov and Kachanov (1999), Shafiro and
Kachanov (1999). The formula (134) holds both for the 3D and 2D cases.

4. Energy change due to the appearance of a circular hole. The topological derivative method for the plane
elasticity problem

4.1. Topological derivative of shape functionals

The notion of a topological derivative has been introduced in Sokotowski and Zochowski (1999a,b) in
order to formulate necessary conditions of optimality for optimum shape design problems. If the shape
functional for the elasticity problem represents the compliance of the body, then the relevant topological
derivative determines an infinitesimal change of energy, brought about by the appearance of a circular hole
or a spherical cavity. Thus the theory of the topological derivative is linked with the problem of evaluating
the change of energy due to the appearance of holes or cavities.

Assume that J(Q) is a shape functional, while the shape design problem has the form

J(Q) = ing(Q). (135)
The optimal domain Q" satisfies the following set of necessary optimality conditions.
On the boundary 0Q* of Q"

dJ(Q, V) =0 (136)

for each admissible vector fields V; the Eulerian semiderivative dJ is explained in Sokotowski and Zolesio
(1992).

In the interior of the domain Q"

T(x) =0 in Q" (137)
Here T(x) represents the topological derivative defined by
. Q\ o, —J(Q
T(x) = lim 2N @) = J(@) (138)
. |, (x)]|

where o, (x) is here a circle of centre in x € Q and of radius ea. Thus |w,(x)| = ne*a®. We refer the reader to
Sokotowski and Zochowski (2001a,b) for the proof in the scalar case. )

The same ideas can be applied to 3D shape optimization problems (cf. Sokotowski and Zochowski,
2001a,b).
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4.2. Topological derivative of the energy functional

Assume that w, is a circle defined above. Let #° be the unknown displacement field of the elasticity
problem of Section 2.1. The potential energy of the body is given by the following shape functional

J(Q\@):%/

A\G,

AP0, (u ey () i — / puds (139)
o0
the function (&) = J(Q \ @,) admits the following expansion (see Sokotowski and Zochowski, 1999a,b):

) = 50) +327'(0°) + o(e?), (140)

where j(0) = J(Q) refers to the problem posed on the virgin domain
1
j(O):——/ p-vds (141)
2 Jao

with v being a solution to the problem (21)—(23). In the case of the body being isotropic the tensor A is given
by (60) and the quantity ;j/(0") equals

g 7'5612 o o \2 o o 2
J'(07) = 7 {(01 +on)” +2(o1 —ou)”|, (142)
where
~  dkp
E=—— 143
k+u (143)

represents the effective Young modulus for the 2D setting. The quantities o1, o1y are principal stresses for the
stress field (6”%) (see (115)).

The expansion (140), along with (142), can be expressed in the form (115) with the tensor H assuming the
following isotropic form

2 2
H = ’g’ (A1 +2A,), (144)

with A, defined by (7). The same formula for the energy change has been recently reported in Garreau et al.
(2001), where a similar perturbation method has been used.

4.3. On perturbation of other shape functionals

Contrary to the compound asymptotics method and the Eshelby method, the topological derivative
method makes it possible to examine perturbation of functionals other than the energy functional. The
perturbation is understood as the appearance of a small circular hole within the domain considered. In
particular, the topological derivatives of the following shape functionals were found in Sokotowski and
Zochowski (1999a,b).

L(Q,) = / (B ufy)? dx, (145)

&

(@) = [ 700 )] (146)

g =1 or ¢ = 2; the matrices B € MZ, # € M? are assumed to be positive definite.
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The topological derivatives of these functionals involve not only the field v, but also an other field being a
solution to the appropriate adjoint problem. In the case of the energy functional both the original and
adjoint problems coincide. For the details the reader is referred to Sokotowski and Zochowski (1999a,b).
An equivalent but different approach has been proposed by Garreau et al. (2001).

In the paper by Nazarov and Sokotowski (2003) the compound asymptotics method and the matched
asymptotics method are applied to the so-called elliptic problems with the polynomial property. An ap-
proximation of the solution to such systems is defined with a prescribed precision which is controlled by the
degree of certain polynomials. Such approximation is defined in the domain without any cavity; in the
paper the space dimension n > 3 is fixed in order to simplify the presentation. Using the approximate
solution in the domain with the cavity of the size ¢ > 0 it is possible to expand the shape functionals and
identify the first term of the expansion which is exactly the topological derivative in the sense considered
here provided that the Neumann type homogeneous boundary conditions are prescribed on the cavity.
Such an approach is general and may be used to identify the form of the expansion for an arbitrary elliptic
boundary value problem. The estimates in Holder weighed spaces are also obtained for the remainder terms
in the expansion.

5. Sensitivity of energy due to homothetic changes of shapes of holes and cavities
5.1. Sensitivity analysis of shape functionals: Case of holes and cavities of arbitrary shape

We come back to the setting of the problem considered in Section 2.1, where ¢ indexes the family of
domains Q, and the boundary value problems for the unknown #* field. We generalize the notion of the
topological derivative of shape functionals by admitting the non-circular holes and non-spherical cavities.
We modify the approach similar to that of Sokotowski and Zochowski (1999a,b) and assume that the
formula (138) represents such a definition with w being arbitrary. If @ is defined as in Section 2.1, then the
definition (138) refers to the point x = 0. Possible shifting to other points from Q is straightforward. Thus
all holes or cavities w,(x) are formed around the point x € Q and all of them are homothetic to each other.
A similar approach for the Neumann problem has been proposed in Lewinski and Sokotowski (2000).

5.2. Topology derivative of the energy functional
The aim of this section is to find the topological derivative of the energy functional J for the 2D case
(n = 2) and its counterpart for n = 3:

L
J@\B) =5 /Q A de— [ peats. (147)

where 2, w, and w are here 3D domains and #° solves the relevant 3D elasticity problem. As before 0 € w,
and w, is defined by (24) forx € R", n =2, 3.
It is clear that

|w,| = ¢"|w|, |0cw,| = &' |0, (148)

where |w| and |0w| represent the volume (area) and the area (length) of open sets w and 0w, for n = 3 or 2,
respectively.

Let us consider the definition (138) in the case of x = 0; it means that a cavity or a hole appears at the
point x = 0 € Q. Similarly to Section 4.2 we introduce the function j(¢) = J(Q \ @,), where ¢ should not
exceed a value &, to fulfil the condition: @, C Q.
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By using (148) one can rearrange the definition (138) as follows:

T(0) = 1 lim M (149)
|| N0+ &
For ¢ = 0 we denote Q.o = Q.
Now we compute
T(0) =L i YO L 1 diE) (150)

T o] 0t d(e) T o 7ot et de

Therefore, in order to compute T(0) it is sufficient to determine j/(¢) and find the limit: lim, o+ (j'(¢)/&" ).
Evaluation of j'(¢): To this end we use the velocity method of shape optimization (cf. Sokotowski and
Zolesio, 1992). We recall that the shape derivative of the shape functional is defined in the following
manner.
Let there be given a vector field ¥V and the associated flow mapping: 7; : R — R" of the form

L(V)(X) = x(1,X), (151)
where
dx(z)
d’L’ - V(‘L',X(’L')), (152)
x(0) =X

and the image of Q, is denoted by T;(Q.). Then the Eulerian semiderivative of the shape functional J(Q,) in
the direction of the field V is defined by

a0 V) = lim L U(T(0.) I ()] (153)

To find j/(¢) one should construct the mapping 7, in such a way that 7,(Q,) = Q... This means, in par-
ticular, that

Wetr = Tr(a)c)a W, = ]:1(608+f) (154)
for |z| < (1/2)e. It is sufficient to choose the speed vector field in the form
X
vV = 155
(%) = —— (155)

for || < (1/2)¢ and x lying in an open neighborhood of dw,. The field V is extended to R" in such a way that
it is a smooth vector function of both the arguments. Moreover, we assume that 0 ¢ supp ¥ and ¥ vanishes
along 0Q.

Now we proceed to find j'(¢). Let us first define the field (#*)" as follows:

1
ey — lim = (™" = ).
() = lim — (" — )
Here u*™* represents the solution to the problem (17) with Q, replaced by €,,. when n = 2 and the case of
n = 3 is treated in the same way. The shape derivative (#*)’ solves the problem below (see Sokotowski and
Zolesio, 1992): find («*)" defined in Q, such that

/Q o)) e = [ [Motw) 1179 V- vas)

Ow,
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for sufficiently regular v. Here I1.a is a projection of a € Mg on the plane tangent to dw,. The quantity
I1.(Vvy) is in Sokotowski and Zolesio (1992) denoted by V.v. Moreover, ¥ = V(0,x).
Let us recall the definition of j(¢)

: 1 : :
jle) = _E/ o(u’) : e(u’)dx.
The first derivative of j(¢) for ¢ > 0:

J6) = @)

=0
is expressed by the following formula:

Jj(e) = —/Q o((u)) : e(ug)dx+% / o(u) : e(w’)V - vdS(x).

0w,

The sign (+) in the last term follows from v being directed inward .. By taking ¥ = #* in the variational
equation for (#°)" and noting that

II.o(u’(x)) : II,(Vu'(x)) = 6(u’(x)) : e(u’(x)) forxe S
we simplify the expression for j'(¢) to the form
je) = f% /a | o(u) : (') V - vdS(x). (156)

Note that ¥ = x/e (see (155)). Moreover, dS(x) = & 1dS(y), y = x/¢ € dw.
Changing the variables in (156) one finds

. 1 n— £ £

(@) =—5&" /e o' (ey)) : €(@(e))y - v(y) dS(y). (157)
Evaluation of the limit for ¢ \, 0%. Using the above expression and the result (150) one finds

0 = g fm [ alwe) el a)y 1) S, (158)

This results in the following expansion of the shape functional J(Q,) in the direction ¥ such that
V.v=y-v,

J(Q,) =J(Q) + &"|w|Z(0) + o(e"). (159)

In the 2D case (n = 2) we can specify the expression (158) by using the asymptotic result (56), to obtain
o o0

=—e€G"" 160

I(0) 2] €07, (160)

where the tensor G is defined by

o190 1 afiu y 10 70
G = oA s (W")e,, (W)y - vds. (161)

dw

Upon substitution of (48) one can express the components of G as follows:

G20 = o] = a7 [ v (162)

ow
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with

10) (79 1 1 4 70 70 10 ) 19 ) 70
W (1) = 5 |15, 0) + B (1) + € )e, (1) (163)

The functions x7% are solutions to the problems P (Section 2.2). It can be shown that for sufficiently
regular shapes of o the directional derivative T(0) becomes the first term of asymptotic expansion and it
gives rise to the expansion of the elastic energy

1
6(Q) = 6(Q) = 587G, + o(e). (164)

Let W = ¢ . Then the formula (164) assumes the form

Au

E(Q,) - 6(Q) = %&A“W/ e (W)e, (W)y - vds + o(). (165)

dw

By virtue of the positive definiteness property (12) one can estimate

E(Q,) - £(Q) = %82 € (W)|’y - vds. (166)

ow

Note that n//(i") Z R, hence W ¢ Z. Let us recall that the domains o for which y - v > 0, possibly with
exception of corner points of Ow, are called star-shaped. Thus the star-shaped property implies that
8(Q,) > £(Q). In other cases the estimate (166) is not helpful. Let us recall that the formula (97) provided
us with a stronger result of the difference &(Q,) — &(Q) being positive irrespective of the shape of dw. Now
we arrive at two seemingly different estimates of change of energy ((97) and (164)). Fortunately, there is no
ambiguity here. Only recently Nazarov and Sokotowski (2003) proved that G = M for arbitrary shapes of
Ow. Since the proof is being published in the paper mentioned above it is sufficient to give only an outline of
the proof. Let us recall the operator

7 ) = A, (u)

and let I" represent any contour encircling the contour dw. The proof is based upon the contour integral
1 off off
3 F[vaay (w)ng — u,a}" (v)nglds

being path independent. We choose # = " and v = y,(9/dy,) (¥"").

First this integral is evaluated along 0w by multiple using of the properties (49) and (50). The result
assumes the form (161). Then, this integral is evaluated along a circle of radius R and eventually computed
for R tending to infinity, by using asymptotic behavior of y*? at infinity. The result occurs to be equal to
M This proves the equality M = G.

5.3. A link to the bubble method by Eschenauer et al.
In this section we show that the expression (160) defines the characteristic function of the bubble method

(see Eschenauer et al., 1994). The plane problem is considered (n = 2).
By using (118) one can rearrange the formula (164) as follows:

1 yopm o,
&(Q,) =6(Q) + Esza“ﬁHW,,a‘“ +o(&?) (167)
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with H = —CGC or
. 1
s =5 Coin | (@) (@) - v, (168)

The boundary condition (120) makes the above formula simpler

~

1 1T 1T
o=y /aw Crrte(s)o7 ()0 (@(yp)y - vdls (169)

with Ctrt7(s) and o™ being the components of C and ¢ referred to the basis (v, 7) along dw. One notes that
H depends only on the hoop stresses associated with the fields @ 5. The equality M = G implies H = H
for all shapes of w.

In the case of isotropy the hoop stresses 6™ (@) are independent of both the moduli & and p, which
follows from the well-known Michell’s theorem.

Let us note that the quadratic form ¢ H,,,,6** differs in a factor from the characteristic function of the
bubble method (see Schumacher, 1995, Eq. (4.11)).

6. Elliptical hole in an isotropic body: Plane problem

6.1. Exact solutions to the exterior problems IA’(“(;,)

We consider a plane, infinite isotropic and homogeneous body of moduli £ and p (see (60)) occupying an
exterior of the ellipse w whose contour is given by

yi\? »\*
(2) +(%) =t (170)
Here a and b are half-lengths of the major and minor axes of the ellipse. Let
1 a—>b
I—E(Cl"‘b), C—m7 a>b, 06[071)
Assume that { = ge". Note that the function
. ¢
y1+1y2=@(C)=1(C+Z> (171)

transforms the exterior of the unit circle in the complex plane onto the domain R? \ @.

The aim of the present section is to recall the formulae for the components of the fields ®,, being
solutions to the problems P(“’ ) of Section 2.4.

Let us start with recalling the solution to the problem of a sheet with the elliptical hole (170) subjected to
remote stresses of intensity ¢ acting in the direction « with respect to the axis y;. The complex potentials
read, % (see Muskhelishvili, 1975, Section 82a)

0(0)= 1l {c 26 c>], 17)
__ 2 Diay | L Din (1+¢%) L dn _ .
Y(0) = ql[e {+ : . @_c(e )| (173)

2 Potential y({) has nothing to do with the fields zp.f.“/’).
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The displacements (u;, u,) measured along (y(,),) are given by

2 + i) = (0) - () 2~ gD
' (0)
with « = 1 4+ 2u/k. The hoop stresses ¢'* are expressed by
¢'(§)
o, = 4R (it = .
o |8(0 e(F(C))k:e F(C) p,(c)

The fields @,,) can now be expressed by the solution (174) as follows:
Dy = (U1, u2)] =y 4o
Pz) = (U1, 12)] 1 yrpos

¢(12) = @(21) = (u17u2)|q:1/2, o=mn/4 + (u1?u2)|q:—1/2, o=—m/4"

1789

(174)

(175)

(176)

The components of the fields @,,), measured along dw, are given by the formulae (A.1) (see Appendix A).

The associated hoop stresses read as follows:
aff(¢(11>)|aw = [(1 +2¢ — %) — 2cos 20]f (),
O“U(‘P(lz))‘aw = —2sin 29/ (¥),
o(Pa))|,, = [(1 = 2¢ = &%) + 2 cos 20]£ (9)

with
F) = (14¢ —2ccos20) .

6.2. Components of tensor M

By (60) we have
AN e ARk AR =k, AP =g
Thus the relations inverse to (118) are expressed as follows:
Y = (k+ ) Do) + (k — 1) Do),
Y = 2ud),
Y = (k= @) D) + (k+ 1) o).
The expanded form of (64) read

Jyai. —(k+,u)/ lp(lll)\n ds — (k— M) l#(211)‘)2(15,

dw

M"2 = —(k + ) lp(lzz)vl ds — (k—p) 'P(zzz)w ds,

dw dw

M2 —(k + p) wgn)vz ds — (k—u) w(lzz)vl ds,

ow dw
M = —H/ (‘ﬁglz)vz + ‘ﬁ(zlz)vl)ds
dw

and the remaining components are determined by symmetry properties (63).

(177)

(178)

(179)

(180)
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Let us prove the expressions

vids = I(1 — ¢) cos¥dd, vpds = I(1 + ¢) sin¥dd. (181)
We note that v; = cosa and v, = sina. Moreover (see Muskhelishvili, 1975, Section 49)
. 1 -
e—w( — - C@/(C) (182)
' (0]

and ds = |p'({)|dY along the contour ¢ = 1. Thus

Vi ds = Re[eiapl(l)] |Z:€m dﬁv
v,ds = Re[ — iew@,(é’)” dv

Z:eh) .

(183)

Taking into account the form of g (see (171)) we arrive at (181).

Substitution of (A.1) into (179) and further into (180), and taking into account (181) leads to some
integrals over ¢. By using the results of integration gathered in (A.3) one finds the following closed for-
mulae for the non-zero components (M*/#)

2
M — 7% [(1 4+ k> — dckp + 242,

U
M2 nl(k + ) (1 + A)k* — 247

N (184)

Yz w (1 + k> + dcku + 2447,

fu
M2 _27112@.

Let us compute
M 2222 (anz)z =821 (1 — ) (k + H)2

since ¢ € [0,1) we conclude that the quadratic form g,;M**q;,, q € Mf, is negative definite. The results
(184) agree with those derived in Movchan and Movchan (1995, Section 5.1.3) directly from the very
definition (57).

Remark. In the case of an elliptical hole the complex potentials assume closed form expressions (172) and
(173). In general, for a hole of arbitrary shape these potentials are expanded in series. Recently Argatov
(1998, Section 2) showed how to express the components of tensor M in terms of the coefficients of these
series. Alternatively, the components of M can be expressed in terms of the coefficients of the conformal
mapping, see Argatov (1998, Section 3).

6.3. Components of tensor H

To find the components of the tensor H the formula (169) will be used. Let us begin with proving that
y-vds = (1 -c*)dy. (185)
Indeed, by the formula

y-v=Re[(n +in)e ™, (186)
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where y; + iy, = p((), with using (182) and by taking into account that ds = |’ ({)|d¥ for ¢ = 1, one finds
y-vds = Re[ T/ (Op(0)]

For p({) of the form (171) we arrive at (185).
In the case of elliptical domain w the formula (169) assumes the form

R (1 _ c2 12 2n . .
Ao =5 [ o @) (@) 0 (188)
E 0

with E defined by (143). By substitution of (177) into (188) and using the integral formulae (A.4) (see
Appendix A) one finds

dv. (187)

g:ehl

~ nl?
Hin=——({0-¢)3-0¢),
1111 E( )( )

2

~ nl
Hyy» = ?(1 +¢)(3+0),

~ nl?
H = ——= 1 —C2 5
1122 5 ( ) (189)
Hxi = Hyo,
~ 2nl?
Hon =2
1212 7

Hiy = Hyp = Hyp = Hppnp

and other components vanish.
6.4. Components of tensors G and H

The formula H = —CGC (see Section 5.2) implies G = —AHA. Due to isotropy of tensor A this formula
reduces to

G = —(k — p)*HE, 0™ 8" — 4 H™ — 2pu(k — ) (0" H™,” + 6" H" ). (190)
Substitution of (189) results in
sz[)’/l;t — Mx[i/i/l’ (191)

where (M**) are given by (184). Consequently
Hapop = Hypip, (192)
where H = —CMC (see (116)). Thus we have confirmed that in the case of an elliptical opening we have
G=M and H=H. (193)

Note yet that G'?'> and Hjy;, are independent of the ratio a/b.
6.5. Case of a circular hole: Unification of all approaches

Let us specify the previous results for the case of a circular opening of radius a. Here ¢ = 0. Tensors
G = M and H = H assume the isotropic form

G = na2(2£A1 + 21’]1\2)7 (194)
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2 2
H= %“ (A1 +2A,) (195)
with
é:_(kﬂl)k, n:_z(kﬁ;cu)u (196)
I

and E is given by (143). The formulae (144) and (195) coincide. We conclude that in the case of a circular
opening all examined methods of assessing the change of energy result in the same formula (115) with
tensor H given by (195). The energy of a body weakened by a circular opening of radius ea reads

2
5(2) = (@) + 2 (10" + 4] + o), (197)
where s° = 6° — (1/2)tr6"1 represents the deviator of ¢°. Alternatively
2
. ) n(ea
5(2) = 5(@) + " (6} + 0} + 2061 — )]+ 0() (198)

where 6!, 6%, are principal stresses.

7. The cavity problem in three dimensions
7.1. The Eshelby method

The formulae of Section 3 have their counterparts in the 3D problem. Then the opening o is called
cavity, its surface is denoted by dw and its volume (by |w|). In the case of w being an ellipsoid the tensor #
is given by (134), where S is Eshelby’s tensor (see Mura, 1982).

Assume that the body is homogeneous and isotropic, with the elastic moduli tensor represented by

Here A, A, are projection operators (see (4)). The bulk (K) and shear (x) moduli are linked with Young’s
modulus E and Poisson’s ratio v by

E E
K =—— 2u = . 2
3 1-2v’ =Ty (200)
Thus, tensor C = A~ is represented by
1-2 1
C=-"A +—04, (201)

E E

see (6). Let us confine our attention to the case of a spherical cavity of radius a. The Eshelby tensor has the
following isotropic representation
1

2
5:3(1+V) (14 VA +5(4 = 5V (202)

Let us compute

_21—2v 7 —5v
T3 1—v

-8 A (203)
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and by using the properties (5) one finds
1—2v 7 —5v

Al —8) =2K— A+ 2u———A 204
(1-19) =y 1+ Ml(l—v) 2 (204)
which enables one to find tensor # (see (134))
1—v 15(1 —v)

H = p[Z(l R M T 3T =5 AQ} ’ (205)

where p = (4/3)na’/|Q|. By (131) one computes the tensor H
2(1 — 10(1
7 e G B AR LU ) D (206)
7—5v

which determines the change of energy in the form

1 0 o 1—v 7'5(13 0.2 0.2

za-’H[jk[akl =73, 7[7(1 + 5v)(tre)” + 10(1 + v)||e||"] (207)

(cf. Kachanov et al., 1994, Eq. (5.16)).
The tensors S and H assume peculiar forms in the case of v =1/5. Then § = (1/2)0 and

8 na’
5 E
The form above is similar to that of the 2D case (cf. (199)).

H|_, ;s = (A1 +2A,). (208)

7.2. The compound asymptotics method

The compound asymptotics method recalled in Section 2 in the 2D context, generalizes to the 3D setting
(cf. Mazja et al., 1991). Although the Somigliana solutions assume different forms, the representation (57)
holds with only the error term corrected; it reads now O(|[y|| ), ¥y = (1,12, 13).

The exterior boundary value problems T’(ff“") have the following 3D counterparts

find ¥ given in R*\@ such that

Som) AM L (™) =0 in R\@, (209)
¢ AME (Y™ )y, =0 on dw, (210)
Y — EC i |ly|| — oo, (211)

Here ||y = (1) + (0»)° + (3)” and

E™(3) = 3 (e, +vies). (12)
Tensor M is defined by the formula

M = giimn /a Yy, ds (213)
similar to (64). The components of tensor H read (cf. (122))

Hmnpq :[ (D(pq)(mvn) dSv (214)
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where @, (y) = Cpqm,,l//<”’”) (v) are solutions to the problems 13(‘[,"(]) analogous to the problems f’(‘;) The
tensors M and H are interrelated by H = —CMC.
By analogy with the representation (48) we write

) — gl 4 o) (215)
where the functions y™ are solutions to the problems

find ™ defined in R*\@ such that

| AN S GG =0 in B\, (216)
o Aijkzﬁ_ltl(x(mn))vj _ _Aijmnvj on dw, (217)
1 — 0 if ||y — oc. (218)

The definition (213) can be put in the form

anpq — _(Amnpq|w| + %'ﬂﬂpﬂ]) (219)
with
s — g / 7, ds. (220)
dw

The appearance of a cavity w, brings about an increase of elastic energy according to the formulae

1 iy

8(Q) = 6(Q) = 5e' M€}, + ofe?), (221)
1 0. o

6(Q) = 6(Q) +58'0"Hyuo"" + o(&) (222)

analogous to those known from the 2D case (cf. (97) and (115)).

In the case of a spherical cavity of radius a the tensor H, which appeared in (222), assumes the form
(206). This identification requires an additional proof which will be omitted here (cf. Sokotowski and
Zochowski, 1999a,b).

7.3. Sensitivity of energy functional due to homothetic changes of cavities

Let us specify the result (158) to the 3D case (n = 3). The topological derivative of J equals

_ 1 0 ~ijkl 0
0 = 2|w| &G s (223)
where
. 1 -
GUM = —3 A" / e, (e, (W )y - vds. (224)

The relation J(Q,) = —&(Q,) implies the following expansion for the elastic energy

1 .
Se'e,GMe) +o(e) (225)

8(2,) = 6(@) —5
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or
1 O ;e o}
£(Q,) =6(Q)+ 5836’1Hiﬂdak1 +o(&%), (226)
where H = —CGC and
77 1 s
i =3 Con | o700 (@) 35, (227)

Here @,y = Cmnk,¢<kl> represent displacement fields caused by remote unit stress states, cf. problems IA’(‘;’W)
of Section 2.4, Egs. (119)—(121). Tensor G given by (224) is equal to tensor M defined by (219) (see Nazarov
and Sokotowski, 2003). The proof is similar to that for the 2D case, as outlined in Section 5.2; the contour
integral becomes a surface integral. Consequently, the tensors H and H coincide.

In the case of isotropy and of w having a spherical shape the tensor H = H assumes the form (206). The
same result has been recently confirmed in Garreau et al. (2001).

8. Effective properties of solids with cavities

The problem of assessing effective moduli of porous media has been extensively developed in the lite-
rature. Despite these ample sources one can notice no attempts to interrelate the Eshelby-like results (see
Nemat-Nasser and Hori, 1993), the asymptotic results of Mazja et al. (1991) and the homogenization re-
sults for porous media (see Jikov et al., 1994, Lewinski and Telega, 2000, Section 3.12). The aim of this
section is to show such relationships.

8.1. The homogenization approach

Consider a homogeneous elastic body of moduli (4”%7) weakened by periodically distributed cavities w,.
The periodicity cell is a parallelepiped ¥, = ¢Y, ¥ = [0, ;] x [0, 1] x [0,7;] and ¢ > 0 is a small parameter.
Each periodicity cell is weakened by the cavity w,. Thus the material cells are ¥ \ @,. The rescaled peri-
odicity cell Y \ @ is parameterized by the Cartesian coordinates y, 3», y3. Let v be a unit vector outward
normal to dw and let n be a unit vector outward normal to 0Y.

According to the homogenization approach the effective properties of a porous body are determined by
solutions to the following basic cell problems:

find ¥\ @—periodic vector fields 7/ such that

mn, 9y ij)\ : —
" A mae;,q(< ')T(j)) =0 1? Y\®, (228)
e (T, = —A4™iy,  on dw, (229)
Amrie (T @))n, assume opposite values at opposite sides of ¥\@. (230)

The effective or homogenized moduli are expressed by

1
Al[c}mn — m |:Ak1mn + Aklpqq;q(T(mn))iI dy (231)
Y\o

The conditions (230) make it possible to rearrange the above formula as follows:

Y\ @ 1
_ ‘ |>(’0|Ak1mn o |Y|Aklpq/ T;;(mn)vq ds. (232)
0w

klmn
AH
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The negative sign above follows from the vector v being directed outward normal to 0w and hence inward
the domain Y \ @. For future references we rewrite (232) in the form

A/;[Imn :Aklmn _ L <|w|Aklmn _|_Aklpq/

T : ™y, dS). (233)

8.2. Dilute distribution of cavities: Homogenization approach

Let w be located in the centre of Y. Assume, moreover, that dimensions of @ are much smaller than the
dimensions /;, 15, I3, of Y. In such a case the fields 7 decay from the boundary 0w and almost vanish on
0Y. Consequently, the fields T @) cease to depend on Y \ @; they depend rather on w, exclusively. Thus one
can assume that T are sought in the domain R’ \ @ and the periodicity conditions (230) are replaced by
radiation conditions:

T () — 0 if ||y|| — oc. (234)

Now we note that under the assumption of @ being small the fields T can be identified with 3@, the
solutions of P) (see Section 7.2). Thus the formula (233) assumes the form

1
Algmn :Aklmn _ m(|(H|Aklmn + %klmn)’ (235)
where .4 has been defined by (220). Using notation (219) one can write
1
AH:A+MM. (236)

Let us define

1
Pl = (9, . (P9),.
I =gz [, (o v )as. 23

where y*? are solutions of (f’fu’m) (see Section 7.2). We note that (236) can be put in the form
Ay =A4—AJ (238)

well known from the book by Nemat-Nasser and Hori (1993, Eq. (4.5.5a)). This links the homogenization
approach with Eshelby-like approach in which the overall microstrain is prescribed.

Let us apply the formula (236) to determine effective elastic moduli of a body weakened by a dilute
distribution of spherical cavities. Since H = —CMC we determine tensor M by M = —AHA and H is given
by (206). Hence M can be written in the form

where
31—y _15(1 —v)
=312 PraIs (240)

Due to random distribution of cavities the tensor Ay is predicted in the isotropic form

AH = 3KHA1 + 2,[11_[[\2. (241)
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Thus the formulae (236), (239) and (241) imply

Ky=(1-op)K,  uy=(1-ppu, (242)

where p = |w|/|Y| represents porosity density. The formulae above coincide with those derived in Nemat-
Nasser and Hori (1993, Egs. (5.2.5b) and (8.1.9a,b)) by the method of prescribing the microstrain. The
same formulae were found by Eshelby (1957, p. 390) by linearizing the following formulae

K.=(+ap) 'K, p.=(1+pp) 'n (243)

with respect to p (cf. also Hlavacek, 1986).
The formulae (242) are equivalent to the following expressions for the effective Young modulus Ey and
Poisson ratio vy

15(1 —v) 3 1—v
- Yyl -2
Ey [ 7—5v pH 21—2\14

= 244
E 1_3(17V)(5V276V+4) ’ (244)
(7=5v)(1 —2v)
15(1 —v?)(v—1/5) P
=y ) 245
=y 21-5) | 30—V —6v+4) (245)
(1 =2v)(7 —5v)
In the case of v=1/5 we have o = f = 2 and
% =1-2p, wy=1/5 (246)
Linearization of (244) and (245) with respect to p gives
E 5 —4
o _§Mp+o(p2)7
E 2 (7—5v) (247)
3 (I =v)(5v—1) 5
K N B A

8.3. Eshelby-like approach to the dilute distribution of cavities

Let us apply the formula (133) to the basic cell ¥ \ @. The elastic energy accumulated in the basic cell is
represented by

1 0. o
E(Y\®) = &(Y) +5plY|0" Hyjuo", (248)
where
1 O o
&(Y) = §|Y|O-ljci/klo-k] (249)

and p = |o|/|Y]. By (205) and (131) we have

- g B
=—A +—A 2
H 3K 1+2ﬂ 2 (250)
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with «, f8 given by (240). Thus ¢ are treated here as remote stresses. The energy & (Y \ @) is approximated
by (1/2)|Y|6"C.iuc* with C, treated as isotropic

1 1

Since the equality (248) holds for all (67) we obtain C, = C + pH, hence

1 1 1 1

=1 — =21 252
which is equivalent to Eshelby’s formulae (243). The derivation of (252) can be found in Nemat-Nasser and
Hori (1993), Jasiuk et al. (1994) and Kachanov et al. (1994). The effective Young modulus and Poisson ratio
are expressed by

31—v)(5v+9) 17"

E=El+==m"5y 7|
6(1 —v) (253)
1 A TR
V*:§+(V_1/5)1 31— v)(5v + 9)
A TE R

Note that the above formula for v, coincides with that reported in Kachanov et al. (1994) upon correction
of a misprint in the numerator.
In the case of v =1/5 we have

E, ,
& =(1+2p) Lo =1/5,
1% Lo 1 (254)
=142, Z=(1+2p) .
z = (L+2n), . (1+2p)
Linearization of (253) with respect to p gives the previous results (247).
Let us compare the effective moduli found in Sections 8.2 and 8.3. We note that
K.—Ky>0, u, —u, >0 E, —Ey;>0 (255)
and
E.—Ey=00%, v, —vy =00,
" (pz) n =00 2 (256)
K. =Ky =00p"), n —wuy=0(p).
The moduli Ky and u,, are linearization of K, and ., respectively. Moreover,
. > if ve (0,1/5),
> ive(0,1/5) (257)

v, <vyg if v>1/5.

Remark. Effective moduli for the 2D problem
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Let us find %,, p, as well as
Bo= et o, Kok (258)

(cf. (143)). We have here

1 1 1 1 ~ 2
C_ﬁAH_EAZ’ C*—z—k*Al—i—z—u*Az, H—E(A1+2A2). (259)
Here A, A, are defined by (7). The equality: C, = C + pﬁ results in
1 1 4 1 1 8
R E omo i E
B n B (260)
~ E _v+p
U143 7 143p

(see Nemat-Nasser and Hori, 1993, Section 5.1; Jasiuk et al., 1994, Eq. (38)). Linearization of (256) gives
Egs. (40) and (41) in Jasiuk et al. (1994), where the negative sign at o should be replaced by (+).

8.4. On identification of cavities by boundary measurements

The approximation of shape functionals
F(Q) = J(Q) + M (@) T (x) + o( M ,(,))

can be used in shape optimization as well as for the numerical solution of some inverse problems. In the
above formula .#,(w,) measures the size of w, C R", n = 2, 3, and 7 (x) denotes the topological derivative
of the shape functional # () evaluated at x € Q,

f(Qf) — /(Q)
e—0F %n(w}) ’

If the Neumann homogeneous boundary conditions are prescribed on the cavity, then .#,(w,) = (diam w,)"
can be selected in the case of integral functionals defined in Q. The case of boundary integrals, better suited
for the inverse problems with boundary measurements is treated in Nazarov and Sokotowski (2003). The
information given by the approximation of shape functional is used in Jackowska-Strumitto et al. (1999) to
perform the learning process of an artificial neural network. The results of computations for 2D examples
in the case of a scalar elliptic equation show, that the method allows to determine an approximation of the
global solution to the inverse problem with circular opening, sufficiently closed to the exact solution. It
means that we can identify the localization and the size of the circular opening that is determined by three
numbers. The proposed method can be extended to the problems with an opening of general shape and to
the identification problems of small inclusions. However, the mathematical theory of the proposed ap-
proach still requires further research. In particular, the proof of global convergence of the method is an
open problem.

9. Concluding remarks and open problems
Let us draw our attention to the following points
(i) the Somigliana solutions determine the tensor M of Polya and Szego (see (57));

(i1) tensor M conditions the increment of energy caused by the appearance of a small hole (see (97)) or
cavity (see (221));
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(ii1) tensor H is linked with tensor M by (116). Its components are determined by solutions to the classical
stress-concentration problems (see (119)—(123)). The tensor H is linked with the Eshelby tensor S by
(133). For a circular hole tensor H assumes an isotropic form (see (143)) and for a spherical cavity, its
isotropic representation is given by (205);

(iv) the sensitivity approach leads to the tensor H given by (168) and (217) for the 2D and 3D cases, res-
pectively. Its components coincide with the components of tensor H;

(v) in the 2D setting a plane opening can be conformally mapped onto a unit circle. The tensor H is fixed
by two first terms of this mapping. These two terms determine an effective elliptical hole. On the other
hand, the formula for tensor H involves all terms of the conformal mapping. Nevertheless the equa-
lity H=H shows that further terms of the conformal mapping do not contribute to H

(vi) the formula for H suggests that this tensor is positive definite for star-shaped domains o only. The
equality H=H proves that in fact H is unconditionally positive definite;

(vil) the classical, or strain-controlled homogenization formulae lead, in a dilute approximation, to the
Eshelby-like formulae reported in Nemat-Nasser and Hori (1993). Upon such approximation the
homogenized tensor becomes explicitly dependent on the Polya—Szego tensor M. For the case of
spherical cavities one obtains the effective bulk and shear moduli as decaying functions, linear with
respect to the porosity density (see (242)). Both the decaying functions coincide for v =1/5;

(viii) the stress-controlled Eshelby-like approach, as exploited in Nemat-Nasser and Hori (1993), Jasiuk
et al. (1994) and Kachanov et al. (1994), leads, within the dilute approximation, to the decaying
functions (252) for the effective bulk and shear moduli. Both these functions coincide for v =1/5.
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Appendix A
The displacement fields (176) are expressed as follows. Let £, = (2u/1)®{; " We have
Fll1 = aj cosV + f(¥)[az cos ¥ + a3 cos ¥ cos 219 + a4 sin ¥ sin 24,
F2 = by sindd + f(9)[by sin g + by sin 9 cos 20 + by cos ¥ sin 219],
Fyy = ¢1cos 9 + f(9)[cy cos ) + ¢3 cos ¥ cos 20 + ¢4 sin ¥ sin 299],

F}, =d,sind + f(9)[ds sin ¥ + d5 sin 9 cos 29 + dj cos ¥ sin 29, (A.1)

F, = <1 +k+21 >sin192if(19)[csin319+ (1+c+c?)siny,
c

1
ﬂé:(l—l—%—z—)cosﬁ—l— —f(9)[~ccos 39 + (1 — ¢ + c*) cos V],
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where f'(9) is given by (178) and the coefficients a;, b;, ¢;, d; read

% 11+¢ _ 1+ec ) 1 ) 2
al—Z(3—c)+§ T @= (1 +2¢—¢%) 2c(l—|—c)(l c)’,
1 1
9325(14‘0)7 614:—5(1—0)27
% I11-c _ 1-c N TR
b]f4(c 1) 5o b, = 7 (142c—¢) 2c(l+c)(l ),
1 1 )
b3:§(1—c), b4—§(1—0),
11+ (A.2)
_ " 1 ¢ __t P N 21 2
¢ = 4(c+l) 5L @ (I+ce)(l=2¢c—¢")+ C(l—i—c)(l ),
1 1
03——5(14"7)’ C4—§(1—Cz)7
drﬁ(ﬂc)*%l_c, d=—2(1-c)(1-2—)+o-(1+)(1+c),
d —71(1%) d ——1(1+c)2
3T 75  da=—35 .
The definite integrals involved in Eq. (180) are expressed by
2n P
/ cos? If (9)d) = ,
0 l—c
2n s T
/0 sin ﬁf(ﬁ)dﬂ:1+c,
2n 1
/ cos® 9 cos 20/ (9)dd) = & < (A3)
0 21—c¢
/zn sin® i cos 20/ (1) d) = — = L€
0 - 2 1—|—C7
2n
/ sin? 207 (9)d9 =
0
if ¢ € [0,1). The definite integrals necessary to determine the components (189) have the form
2n 5 5 T
29 __
/o sin” 29/*(9) dv [
2n 2 —
/(1+2c—c2—2005219)2f2(19)d19:%,
’ (A4)

2n
/ (1 —2¢—c*4+2c0829)(1 +2¢ — ¢* — 2¢0s29) f2(9) dv) = —2m,
0

2n(3 +¢)
l—c °

2n
/ (1 —2¢ —c* +2c0s20)°f2(9)d9 =
0
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